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TOM LXV – ZESZYT 2 – 2018 

Anna STASZEWSKA-BYSTROVA1 

Refined Bonferroni prediction bands  
for autoregressive models2 

1. INTRODUCTION

A number of papers address the problem of constructing prediction bands for 
multivariate and univariate autoregressive (AR) models (see e.g., Jordà, Marcel-
lino, 2010; Staszewska-Bystrova, 2011, 2013; Staszewska-Bystrova, Winker, 
2013; Wolf, Wunderli, 2015). Joint prediction bands are designed to contain the 
future trajectory of a predicted variable with probability given by the coverage 
level and therefore provide valuable information on the predictive uncertainty. 
The most successful methods of band construction use the bootstrap (Efron, 
1979) to derive the relevant predictive distributions. Bootstrap methods are also 
commonly used for this class of models for forming prediction intervals (see i.a. 
Thombs, Schucany, 1990; Masarotto, 1990; Breidt et al., 1995; Grigoletto, 1998; 
Kim, 2001; Clements, Kim, 2007). 

The methods of building joint bands, which have been proposed, lead to ob-
taining prediction regions which differ with respect to the estimated coverage 
levels and widths. Simulation studies reported by Lütkepohl et al. (2015a, 
2015b) in the context of constructing confidence bands for impulse responses 
show that the conservative bootstrap Bonferroni bands are quite successful in 
terms of maintaining the nominal coverage probability. However, the estimated 
coverage rates are often larger than the nominal values for these bands.  
Excessive coverage is, in turn, associated with unnecessarily large width of the 
bands. 

The aim of this paper is to refine the basic bootstrap Bonferroni bands in two 
ways: first, by applying higher order Bonferroni-type inequalities (Hoover, 1990, 
see also Glaz, Ravishanker, 1991) and second, by considering imbalanced Bon-
ferroni bands found through optimization. Both refinements should lead to reduc-
tions in the width of the bands. The working of the methods is compared to the 
performance of the sup-t procedure described by Wolf, Wunderli (2015). 

1 University of Lodz, Faculty of Economics and Sociology, Chair of Econometric Models and Fore-
casts, 41 Rewolucji 1905r. St., 90–214 Lodz, Poland, e-mail: anna.bystrova@uni.lodz.pl. 

2 Financial support provided by the National Science Center, Poland (NCN) through HARMONIA 
6: UMO-2014/14/M/HS4/00901 is gratefully acknowledged. 
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The proposed methods are applied to persistent AR models containing a lin-
ear trend. The parameters of such models can be estimated using various 
methods. Some standard estimators including the ordinary least squares (OLS) 
or the Yule-Walker estimators are, however, not recommended due to their 
small sample bias (see e.g. Andrews, Chen, 1994). Alternative estimation 
methods for univariate AR models with time trend have been proposed for in-
stance by Andrews, Chen (1994), Kilian (1998) and Roy, Fuller (2001). Clem-
ents, Kim (2007) report that bootstrap prediction intervals for the AR model 
based on the approximately median unbiased Roy-Fuller estimator have the 
best small sample properties. This estimator is therefore applied in the study 
reported below. 

The structure of the paper is as follows. The next section presents the AR 
framework and the estimation method used. In section 3 the bootstrap algorithm 
for obtaining predictive distributions is described and in section 4 the standard 
Bonferroni bands, the proposed refinements and the benchmark sup-t bands are 
discussed. Section 5 presents the Monte Carlo comparison of the methods while 
section 6 concludes. 

 
2. THE MODEL 

 
The model considered in this paper is an AR(p) with intercept and a linear 

time trend (see Box, Jenkins, 1970; Lütkepohl, Krätzing, 2004): 
 
௧ݕ  = ߤ + ݐߚ + ௧ିଵݕଵߙ + ௧ିଶݕଶߙ + ⋯ + ௧ିݕߙ + ௧, (1)ߝ
 

where ߝ௧~iid(0,  .(ଶߪ
 
The model can be reparametrized either as 
 
௧ݕ  = ߤ + ݐߚ + ௧ିଵݕଵߛ + ௧ିଵݕ∆ଵߜ + ⋯ + ௧ିାଵݕ∆ିଵߜ + ௧, (2)ߝ

 
where ∆ݕ௧ = ௧ݕ − ଵߛ ,௧ିଵݕ = ∑ ୀଵߙ ଵߙ , = ଵߛ + ߙ ,ଵߜ = ߜ − ିଵ for 2ߜ ≤ ݅ ≤  − 1 
and ߙ =  ିଵ or asߜ−
 

௧ݕ  = ߤ + ݐߚ + ௧ିଵݕଵିߛ + ௧ିଵݕଵܵߠ + ⋯ + ௧ିାଵݕିଵܵߠ + ௧, (3)ߝ
 

where ܵݕ௧ = ௧ݕ + ଵିߛ ,௧ିଵݕ = ∑ (−1)ାଵߙୀଵ ଵߙ , = ଵିߛ + ߙ ,ଵߠ = ߠ + ିଵ for 2ߠ ≤݅ ≤  − 1 and ߙ =  ଵ in (2) describes the persistence ofߛ ିଵ. The parameterߠ
the AR process. In what follows it is assumed to belong to the interval (−1,1). 

 
Given the pre-sample values ିݕାଵ, … , ,ଵݕ  and the sample valuesݕ … ,  the ,்ݕ

parameters of model (2) can be estimated using the method proposed by Roy, 
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Fuller (2001). The Roy-Fuller (RF) estimator of ߛଵ is approximately unbiased and 
its mean squared error is smaller than that of the ordinary least squares estima-
tor for time series with a root near 1. The estimator is defined as 

 
ොଵோிߛ  = min(ߛଵ,1), (4)
 

where ߛଵ = ሶଵߛ + )ܥ] ሶ߬ଵ) + )ିܥ ሶ߬ିଵ)]ߪሶଵ, ߛሶଵ is the least squares estimator of the 
parameter of ݕො௧ିଵ in the model where ݕො௧ is regressed on ݕො௧ିଵ, ,ො௧ିଵݕ∆ … ,  ௧ on the constantݕ ො௧ denotes the least squares residual from the regression ofݕ ,ො௧ିାଵݕ∆
and linear trend t and ߪሶଵ is the standard error of ߛሶଵ. The functions ܥ( ሶ߬ଵ) and ିܥ( ሶ߬ିଵ) are based respectively on the unit root statistic 

 
 ሶ߬ଵ = ሶଵߛ − ሶଵߪ1 , (5)

 
and the negative unit-root statistic 

 
 ሶ߬ିଵ = ሶିଵߛ + ሶିଵߪ1 , (6)

 
where ߛሶିଵ and ߪሶିଵ are the least squares estimator of the coefficient of ݕො௧ିଵ in the 
model where ݕො௧ is regressed on ݕො௧ିଵ, ,ො௧ିଵݕܵ … , )ܥ .ሶିଵߛ ො௧ିାଵ and the standard error ofݕܵ ሶ߬ଵ) has the form3 

)ܥ  ሶ߬ଵ) = −߬ௗ + ்݀( ሶ߬ଵ − ߬ௗ), ሶ߬ଵ > ߬ௗ,= (ܶିଵܫ ሶ߬ଵ) − 3[ ሶ߬ଵ + ݇( ሶ߬ଵ − ,ଵି[(ܭ ܭ < ሶ߬ଵ ≤ ߬ௗ,= (ܶିଵܫ ሶ߬ଵ) − 3[ ሶ߬ଵ]ିଵ, −ඨ3ܶܫ < ሶ߬ଵ ≤ ,ܭ
= 0, ሶ߬ଵ ≤ −ඨ3ܶܫ ,

 

 
where ܫ stands for the integer part of ଵଶ ) + 1), ߬ௗ is the median of the limiting 
distribution of ሶ߬ଵ under the null, ݇ = ൣ3ܶ − ߬ௗଶ ൫ܫ + ܶ൯൧[߬ௗ(߬ௗ − ܫ)(ܭ ++ܶ)]ିଵ. The constants K and ்݀ are set, following Roy, Fuller (2001), to –5 and 
0.29, respectively. The expression for ିܥ( ሶ߬ିଵ) is as follows 
                      

3 Apart from the paper by Roy, Fuller (2001) see also the errata available at Anindya Roy’s 
webpage. 
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)ିܥ  ሶ߬ିଵ) = 0, ሶ߬ିଵ ≥ ඥ݇ିଵ,= ൬ඌ + 12 ඐ + ଶ൰ܫ ܶିଵ ሶ߬ିଵ − ሶ߬ିଵିଵ, ܭ ≤ ሶ߬ିଵ < ඥ݇ିଵ,= ்ܽ + ்ܾ( ሶ߬ିଵ + ,(ܭ ሶ߬ିଵ < ,ܭ  

 
where ܫଶ is equal to 0 if  is even and is given by 3 if  is odd, ۂݍہ stands for the 

greatest integer less than or equal to ݍ, ݇ିଵ = ቀቔାଵଶ ቕ + ଶቁିଵܫ ܶ, ்ܽ = ∗ିܥ ்ܾ ,(ܭ−) = ∗ᇱିܥ ∗ିܥ and ,(ܭ−) ( ሶ߬ିଵ) = ൫)ہ + ۂ2/(1 + ଶ൯ܶିଵܫ ሶ߬ିଵ − ሶ߬ିଵିଵ. 
 
Given an estimate ߛොଵோி, the parameters ߤ, ,ߚ ,ଵߜ … ,  ିଵ can be estimated fromߜ

the regression of ݕ௧ − ,௧ିଵݕ௧ିଵ on the constant, trend and lagged differences Δݕොଵோிߛ … , Δݕ௧ିାଵ, producing ̂ߤோி, ,መோிߚ ,መଵோிߜ … , መିଵோிߜ . The only exception arises if ߛොଵோி = 1 when the parameter on trend is restricted to 0. In the next step, esti-
mates of ߙଵ, … , ,ොଵோிߙ , denoted byߙ … ,  ොோி, can be obtained. The variance of theߙ
random error ߝ௧ can be estimated using  

 
ොଶߪ  = 1ܶ − ݈  ௧̂ଶ்ߝ

௧ୀଵ , (7)

 
where ݈ stands for the number of estimated coefficients and  

 
௧̂ߝ  = ௧ݕ − ோிߤ̂ − ݐመோிߚ − ௧ିଵݕොଵோிߙ − ⋯ − ௧ି. (8)ݕොோிߙ
 
The point forecasts ݕො(ℎ) for 1, … ,  and the corresponding prediction standard ܪ

errors ߪො(ℎ) may be calculated according to 
 
ො(ℎ)ݕ  = ோிߤ̂ + ܶ)መோிߚ + ℎ) + ො(ℎݕොଵோிߙ − 1) + ⋯ + ො(ℎݕොோிߙ − (9) ,(
 

where ݕො(݆) = ݆ ା for்ݕ ≤ 0, 
 

and 
 
ො(ℎ)ߪ  = ଶߠොଶටߪ + ⋯ + ିଵଶߠ , (10)

 
where ߠ = ∑ ିୀଵߠ ݆ ොோி forߙ = 1,2, … , ℎ − 1 with ߙොோி = 0 for ݅ > ߠ and  = 1. 

 
In what follows the main interest lies in using the Roy-Fuller estimator and the 

bootstrap method for constructing prediction bands which should cover the fu-
ture H-dimensional path of realizations (ܪ)ݕ = ,ାଵ்ݕ) … , -ାு)′ which a preas்ݕ
signed probability. 
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3. THE BOOTSTRAP ALGORITHM 

 
Predictive distributions and estimates of standardized prediction errors are ob-

tained using the residual bootstrap procedure. Calculations involve a number of 
steps: 
1) The parameters of model (1) are estimated using the Roy-Fuller method and 

the corresponding residuals are computed. The residuals from (8) are inflated 

using a factor of ට ்்ି (see e.g. Stine, 1987) and denoted by ߝ௧̂∗. 
2) A sample of pseudo-data of size ܶ is generated from the bootstrap data gen-

erating process of the form (see Clements, Kim, 2007; Fresoli et al., 2015): 

 
∗௧ݕ  = ோிߤ̂ + ݐመோிߚ + ∗௧ିଵݕොଵோிߙ + ⋯ + ∗௧ିݕොோிߙ + ௧∗, (11)ߝ

 
where actual observations ିݕାଵ, … , ∗ାଵିݕ  are used as pre-sample valuesݕ , … ,  .∗௧̂ߝ ௧∗ is drawn randomly from the rescaled residual seriesߝ ∗ andݕ

3) The pseudo-data set is used to re-estimate the parameters of model (1) pro-
ducing ̂ߤோி∗, ,∗መோிߚ ,∗ොଵோிߙ … , -ො∗(ℎ) and preݕ ොோி∗ and also to compute forecastsߙ
diction standard errors ߪො∗(ℎ) as in (9) and (10) but with ̂ߤோி, ,መோிߚ ,ොଵோிߙ … ,  ොோிߙ
replaced by ̂ߤோி∗, ,∗መோிߚ ,∗ොଵோிߙ … ,  .∗ොோிߙ

4) Bootstrap future trajectory for horizon (1)∗ݕ) ,ܪ, … , -is generated us ′((ܪ)∗ݕ
ing: 

 
(ℎ)∗ݕ  = ∗ோிߤ̂ + ܶ)∗መோிߚ + ℎ) + ℎ)∗ݕ∗ොଵோிߙ − 1) + ⋯ ℎ)∗ݕ∗ොோிߙ+ + − ( + ∗, (12)ߝ

 
where ℎ = 1, … , (݅)∗ݕ ,ܪ = ݅ ା for்ݕ ≤ 0 and ߝ∗ is drawn randomly from the 
series ߝ௧̂∗. 

5) Bootstrap vector of standardized prediction errors መܵ∗(ܪ) = ,(1)∗ݏ̂) … ,  ′((ܪ)∗ݏ̂
is evaluated by generating ݕ௧∗ for ܶ + 1 ≤ ݐ ≤ ܶ +  analogously as in (11) but ܪ
with initial values given by ି்ݕାଵ, … , and calculating, for ℎ ்ݕ = 1, … ,  :ܪ

 
(ℎ)∗ݏ̂  = ௬ො∗()ି௬∗()ఙෝ∗() . (13)

 
The procedure in steps (2)–(5) is repeated N times (where N denotes the 

number of iterations in the bootstrap loop), providing N bootstrap replicates of 
the future trajectory of ݕ and the same number of replicates of the vector of 
standardized prediction errors. These values can be used to construct various 
bootstrap prediction bands. 
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4. REFINED BONFERRONI BANDS

Prediction bands can be constructed using Bonferroni’s method. Suppose the 
objective is to construct a (1 − (ߛ × 100% prediction band B for the elements of 
an H-dimensional vector (ܪ)ݕ = ,ାଵ்ݕ) … ,  ାு)′. The Bonferroni inequality்ݕ

(ܪ)ݕ)ܲ ∈ (ܤ ≥ ∑ (1 − )ுୀଵߛ − ܪ) − 1), (14)

where 1 −   is the coverage probability of the band at horizon ℎ (i.e. computedߛ
with respect to ்ݕା), indicates that in order to achieve at least the desired cov-
erage of the band, it can be assumed that ∑ ுୀଵߛ = -The most common ap .ߛ
proach is to set each ߛ to the same value ఊு. The resulting band is constructed

from ቀ1 − ఊுቁ × 100% prediction intervals for each element ்ݕା separately: 

ܤ = ,ଵܤ] [ଵܤ × ,ଶܤ]  [ଶܤ × … × ,ுܤ] ,[ுܤ (15)

where ܤ and ܤ denote respectively, the ఊଶு and 1 − ఊଶு quantiles of the predic-
tive distribution of ்ݕା. 

Given that the actual coverage of the Bonferroni band may easily exceed the 
desired level and the band may, in effect, be excessively wide (see, e.g. Lüt-
kepohl et al., 2015b) it makes sense to try to refine the Bonferroni bands in such 
a way that the actual coverage becomes closer to the nominal level and the 
width of the bands is reduced. 

The first refinement uses higher order Bonferroni-type inequalities of Hoover 
(1990). Glaz, Ravishanker (1991) apply these inequalities to construct prediction 
bands for ARIMA models using the properties of the multivariate normal distribu-
tion. In this paper, the bootstrap distribution of the predictor is considered. The 
condition implied by the Bonferroni-type inequality of order k, for 1 < ݇ ≤ ܪ − 1 
for the band ܤ has the form: 

(ܪ)ݕ)ܲ ∈ (ܤ ≥ ∑ ൫1 − ,ାିଵ൯ߛ − ∑ ൫1 − ାଵ,ାିଵ൯ுିୀଵுାଵିୀଵߛ , (16)

where for 1 ≤ ݉ ≤ ݊ ≤ 1) ,ܪ −  ,) is the probability that realizations of theߛ
predicted variable observed from horizon m to horizon n is covered by the corre-
sponding stretch of the band, ߛ, = ାଵ,ߛ  andߛ ≡ 1. 

The band with equal values of ߛ for ℎ = 1, … ,  could be constructed in an ,ܪ
iterative manner by starting from the band derived from Bonferroni’s inequality 
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and reducing the coverage of the intervals in each step by 1/N, where N is the 
number of bootstrap replications (making ߛ larger in each step by 1/N). In each 
iteration it would be checked whether the relevant higher order Bonferroni ine-
quality was observed. This can be achieved by computing the bootstrap cover-
age at single horizons and multiple horizons and evaluating the Bonferroni-type 
inequality of order ݇ of interest. The final values of ߛ would be the largest val-
ues for which the inequality was met. The larger the value of ݇, the less con-
servative the resulting band. 

The second refinement of the basic Bonferroni band aims at finding such ߛ 
for ℎ = 1, … , ,ܪ ∑ ߛ = ுୀଵߛ  that the width of the band is as small as possible. 
The resulting Bonferroni band can be described as imbalanced (see e.g. Wolf, 
Wunderli, 2015).  

Optimization is done using threshold accepting (TA) belonging to a class of 
refined local search methods. The procedure was proposed by Dueck, Scheuer 
(1990) and applied to the problem of constructing prediction bands e.g. by 
Staszewska-Bystrova, Winker (2013) and Grabowski et al. (2017).  

The objective function which is minimized is the width of the band: 
 
(்ܤ)ܹ  = ∑ ்ܤ) − ்)ுୀଵܤ , (17)
 

where ்ܤ is the Bonferroni band obtained using threshold accepting. The de-
tailed steps of the optimization procedure are presented in algorithm 1.  

 
The algorithm is initialized (step 1) by considering as the starting solution ܤ, 

the basic Bonferroni band B and evaluating the objective function for this band. 
The number of search steps (݊௧) and the threshold sequence (ݐଵ, … ,  ೝ) ofݐ
the corresponding length are also set. The threshold values should be positive 
and decreasing. Then ݊௧ iterations are performed. In each iteration ݅, a new 
solution (prediction band) belonging to the neighborhood of the current solution 
is considered. The neighboring band is created randomly by modifying the width 
of the currently considered band in two points in such a way that the constraint ∑ ߛ = ுୀଵߛ  is not violated. To achieve this, two values ℎଵ and ℎଶ are randomly 
selected from the set {1, … ,  మߛ భ andߛ and the corresponding values (step 2) {ܪ
are changed (steps 3–5). First, ߛభ is made smaller by subtracting a random frac-
tion of its current value (݂). Second, ߛమ is enlarged by ݂. Then, the width of the 
new band ܤ is computed and compared to the width of the current band (step 6). 
If the difference is smaller than the threshold value for iteration ݅, then the solu-
tion is accepted as the current solution (step 7). The algorithm continues until ݊௧ search steps are completed. The band with the smallest value of the objec-
tive function found throughout the search steps, denoted by ்ܤ is presented as 
the final solution. 
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Algorithm 1.  
Threshold accepting procedure 

1. Obtain initial solution ܤ and compute ܹ(ܤ ). Set the value of ݊௧ and ݐଵ, … ,  ೝݐ
2. for ݅ = 1, … , ݊௧ do 
3. Randomly select two integers: ℎଵ and ℎଶ from the set {1, … ,  {ܪ
4. Randomly select p from the interval (0,1) and compute ݂ = భcߛ  
5. Obtain new solution ܤ by setting ߛభ = భߛ − ݂  and ߛమ = మߛ + ݂ 
6. Calculate ∆= (ܤ)ܹ −  (ܤ)ܹ
7. if ∆< ܤ  thenݐ =  ܤ
8. end for 

 
The proposed Bonferroni-type bands are compared to the sup-t method de-

scribed by Wolf, Wunderli (2015). The benchmark procedure has some optimali-
ty properties (e.g smaller width) as compared to the traditional Bonferroni algo-
rithm in large samples (see Montiel Olea, Plagborg-Møller, 2017). The sup-t 
bands are computed by finding the largest value in each of the ܰ vectors | መܵ∗(ܪ)| 
and obtaining ݀ଵିఈ equal to the 1 −  quantile of these maxima. In the next step ߙ
the band is formed as 

 
ො(1)ݕ]  ± ݀ଵିఈߪො(1)] × … × (ܪ)ොݕ] ± ݀ଵିఈߪො(ܪ)]. (18)
 

5. A SIMULATION STUDY 
 
Small-sample properties of the bands were studied using Monte Carlo simula-

tions. A number of data generating processes (DGPs) were investigated. The 
first set of DGPs (denoted by DGP.A), considered also by Clements, Kim (2007), 
had the form: 

 
௧ݕ  = 1 + (1 − ݐ(ߙ + ௧ିଵݕߙ + ௧,   (19)ߝ
 

where ߙ ∈ {0.5,0.9,0.95}. Higher values of ߙ correspond to larger degree of per-
sistence of the AR process. Three different distributions of the errors, ߝ௧, were 
considered for DGP.A: a standard normal distribution (ܰ(0,1)), a chi-square 
distribution with 4 degrees of freedom, centered to have mean 0 and standard-
ized to have variance 1 and a t-distribution with 4 degrees of freedom standard-
ized to have variance equal to 1. 

 
More complex DGPs (DGP.B), corresponding to AR(2) were given by: 
 
௧ݕ  = 1 + (1.85 − ݐ(ଵߙ + ௧ିଵݕଵߙ − ௧ିଶݕ0.85 + ௧~ܰ(0,1), (20)ߝ    ,௧ߝ
 

where ߙଵ ∈ {1.35,1.75,1.8}. For these processes ߛଵ = ଵߙ − 0.85 and so the per-
sistence also grows as the value of ߙଵ increases. 
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The other settings of the Monte Carlo experiments were as follows. The num-
ber of Monte Carlo replications M was set to 1000 and the number of iterations 
in the bootstrap procedure N was equal to 2000.4 In each Monte Carlo iteration, 
parameters of an AR model with a constant and trend were estimated. The lag 
order was selected using Akaike’s information criterion (AIC) allowing for up to 
8 lags. The same number of lags was used for the models estimated in the 
bootstrap procedure. The sample size T and the forecast horizon H belonged 
respectively to the following sets: ܶ ∈ {100, 400} and ܪ ∈ {4, 8, 12}. The nominal 
coverage rate of the bands was given by 0.9.  

Further parameter settings corresponded to specific methods of constructing 
bands. The value of ݇ for the procedure based on higher order Bonferroni’s ine-
quality was equal to 2, 3 or 4. Since the combination ݇ = 4 and ܪ = 4 is not 
feasible due to the condition ݇ ≤ ܪ − 1, the results were not obtained for these 
cases and the corresponding entries in tables are given as NA. TA optimization 
was performed for ݊௧ = 500000 and the threshold sequence defined as  ݐ = ೝିೝ × 0.05  for ݅ = 1, … , ݊௧. 

Two properties of prediction bands were evaluated in the simulations: mean 
coverage rates and average width. In order to evaluate the coverage probabili-
ties, 1000 future trajectories of length H (each computed conditionally on the last 
p values from the generated sample) were obtained from the DGPs. Then, 
in every Monte Carlo replication the proportions of trajectories lying entirely with-
in the alternative prediction bands were computed. Mean coverage rates were 
obtained as averages of these proportions over M replications. To provide 
a measure of width of the bands, sum of differences between the upper and 
lower bounds were calculated for ℎ = 1 , … ,  and divided by H. Average values ܪ
for M Monte Carlo iterations are reported. 

The results of all experiments are presented in tables 1–6 and tables A1–A6 
from the Appendix. Tables 1–3 and 4–6 contain results obtained respectively for 
DGP.A with normal errors and DGP.B with alternative parameter values. 
In tables A1–A3 and A4–A6 estimated coverage rates and width measures are 
presented for DGP.A with chi-square distributed and t-distributed errors. Quanti-
ties without parentheses correspond to the estimated coverage probabilities, 
while values in parentheses indicate average width of the bands. 

 
Table 1. RESULTS FOR DGP.A WITH ߙ = 0.5 AND NORMAL ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 89.16 88.55 87.83 87.59 NA 88.58 
 (5.18) (5.07) (5.04) (5.02)  (5.12) 

                      
4 Some experiments showed that using 5000 Monte Carlo and 5000 bootstrap iterations did not 

change the conclusions significantly. 
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Table 1. RESULTS FOR DGP.A WITH ߙ = 0.5 AND NORMAL ERRORS (cont.) 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  (dok.) 

8 88.67 88.27 86.93 86.68 86.55 87.90 
 (6.01) (5.87) (5.82) (5.80) (5.79) (5.93) 

12 88.06 88.09 86.22 85.92 85.79 87.20 
ࢀ (6.36) (6.22) (6.23) (6.26) (6.31) (6.45)  =  

4 90.51 89.68 89.35 89.15 NA 89.91 
 (5.00) (4.89) (4.89) (4.87)  (4.95) 

8 90.40 89.68 88.86 88.68 88.59 89.53 
 (5.72) (5.61) (5.58) (5.56) (5.55) (5.66) 

12 90.07 89.59 88.42 88.29 88.21 89.00 
 (6.10) (5.99) (5.95) (5.94) (5.93) (6.02) 

 
The Monte Carlo results for the proposed versions of the Bonferroni band can 

be summarized as follows. While all the refinements work in the expected way 
and bring down the average width of the prediction bands as compared to the 
Bonferroni band, the size of the reduction differs between methods and depends 
on the specific features of the DGP and the sample size. It has also varying im-
pact on the estimated coverage probabilities.  

A general observation is that ்ܤ is almost always wider than the widest of 
the ܤ bands, i.e. ܤଶ. The three versions of the bands based on higher order 
Bonferroni-type inequalities do not differ much in terms of width. Given that ܤଶ is 
considerably more aggressive than the Bonferroni band and that further small 
reductions in width as implied by ܤଷ and ܤସ tend to impair the coverage proba-
bilities of these bands, ܤଶ might be preferred over the remaining ܤ methods. 
The length of the forecast horizon has an expected impact on the width of the 
prediction bands for all the methods, i.e. the width grows as ܪ increases, how-
ever it does not influence the relative ordering of the Bonferroni-type procedures 
for band construction.  

 
Table 2. RESULTS FOR DGP.A WITH ߙ = 0.9 AND NORMAL ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 91.36 
(6.93) 

89.03 
(6.46) 

88.57 
(6.43) 

88.15 
(6.37) 

NA 90.91 
(6.80) 

8 91.77 
(9.90) 

88.59 
(8.96) 

88.13 
(8.94) 

87.46 
(8.81) 

87.18 
(8.76) 

91.46 
(9.69) 

12 91.74 
(12.16) 

88.08 
(10.85) 

87.84 
(10.84) 

12.20 
(10.66) 

86.72 
(10.58) 

91.51 
(11.90) 
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Table 2. RESULTS FOR DGP.A WITH ߙ = 0.9 AND NORMAL ERRORS (cont.) 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 92.32 
(6.43) 

89.77 
(6.02) 

89.71 
(6.05) 

89.34 
(6.00) 

NA 91.88 
(6.34) 

8 93.28 
(8.71) 

89.81 
(7.97) 

89.92 
(8.06) 

89.30 
(7.97) 

89.07 
(7.93) 

92.88 
(8.57) 

12 93.66 
(10.20) 

89.81 
(9.21) 

90.08 
(9.40) 

89.41 
(9.28) 

89.10 
(9.23) 

93.26 
(10.03) 

 

 
Table 3. RESULTS FOR DGP.A WITH ߙ = 0.95 AND NORMAL ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 91.54 
(7.14) 

89.04 
(6.62) 

88.62 
(6.59) 

88.18 
(6.52) 

NA 91.05 
(7.00) 

8 92.06 
(10.57) 

88.47 
(9.47) 

88.19 
(9.42) 

87.48 
(9.28) 

87.19 
(9.22) 

91.72 
(10.33) 

12 91.99 
(13.32) 

87.70 
(11.76) 

87.82 
(11.69) 

87.00 
(11.48) 

86.61 
(11.39) 

91.73 
ࢀ (13.01) =  

4 92.63 
(6.73) 

89.81 
(6.24) 

89.85 
(6.29) 

89.44 
(6.23) 

NA 92.24 
(6.63) 

8 93.84 
(9.59) 

89.90 
(8.62) 

90.21 
(8.78) 

89.58 
(8.66) 

89.30 
(8.62) 

93.55 
(9.42) 

12 94.41 
(11.73) 

89.93 
(10.33) 

90.55 
(10.64) 

89.81 
(10.48) 

89.47 
(10.42) 

94.16 
(11.51) 

 
A more detailed assessment of all the methods leads to the following observa-

tions. Results obtained for DGP.A with normal errors (tables 1–3) indicate that 
performance of the procedures depends on the persistence of the process that 
generated the data and the available number of observations. These features 
influence the working of the basic Bonferroni band which becomes more con-
servative for more persistent processes and larger samples which in turn brings 
about the need for refinement and also the sup-t method which tends to under-
cover for the smaller sample size, especially if the forecast horizon is long. For ߙ = 0.5 (table 1) the ܤ band is overall best for both sample sizes in terms of the 
estimated coverage probabilities, however for bigger values of ߙ (tables 2–3) 
these probabilities become too large as compared to the nominal rate of 0.9. 
This effect can be observed for both smaller sample size and larger sample size, 
where as expected, it is even more pronounced. In these cases, selected alter-
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native methods may be preferable. In particular, if the number of observations is 
small, ்ܤ bands could be used as they maintain the nominal coverage rate, 
while for larger sample sizes ܤଶ and sup-t bands have the best coverage proper-
ties.5 

 
Table 4. RESULTS FOR DGP.B WITH ߙଵ = 1.35 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 90.41 
(7.68) 

88.62 
(7.29) 

87.27 
(7.15) 

87.19 
(7.14) 

NA 89.78 
(7.54) 

8 89.55 
(10.00) 

88.55 
(9.72) 

86.44 
(9.44) 

86.41 
(9.44) 

86.11 
(9.39) 

88.72 
(9.82) 

12 89.12 
(11.58) 

88.57 
(11.34) 

86.23 
(11.00) 

86.19 
(11.00) 

85.77 
(10.93) 

88.28 
ࢀ (11.37) =  

4 92.13 
(7.45) 

89.69 
(6.99) 

89.18 
(6.95) 

89.10 
(6.94) 

NA 91.63 
(7.33) 

8 92.16 
(9.83) 

89.74 
(9.30) 

89.37 
(9.29) 

89.34 
(9.29) 

89.00 
(9.23) 

91.41 
(9.67) 

12 92.10 
(11.39) 

89.74 
(10.80) 

89.50 
(10.84) 

89.47 
(10.83) 

89.10 
(10.76) 

91.30 
(11.20) 

 
Table 5. RESULTS FOR DGP.B WITH ߙଵ = 1.75 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 92.39 
(11.55) 

88.85 
(10.35) 

87.61 
(10.18) 

87.42 
(10.14) 

NA 91.50 
(11.17) 

8 92.53 
(20.13) 

88.21 
(17.63) 

86.09 
(17.23) 

85.87 
(17.15) 

85.78 
(17.13) 

91.98 
(19.51) 

12 92.20 
(25.08) 

87.94 
(21.92) 

85.28 
(21.44) 

85.07 
(21.36) 

84.99 
(21.33) 

91.67 
ࢀ (24.41) =  

4 94.02 
(11.15) 

89.80 
(9.85) 

89.49 
(9.83) 

89.31 
(9.79) 

NA 93.45 
(10.83) 

8 94.85 
(18.87) 

89.70 
(16.29) 

89.09 
(16.24) 

88.90 
(16.18) 

88.83 
(16.16) 

94.49 
(18.37) 

12 94.82 
(22.90) 

89.62 
(19.91) 

88.85 
(19.87) 

88.70 
(19.81) 

88.64 
(19.79) 

94.35 
(22.38) 

                      
5 Some additional simulation results obtained for DGP.A with ߙ = 0.9 indicate that ்ܤ bands 

might be considered as superior to ܤଶ and sup-t bands for sample sizes smaller than 130, where the 
mean coverage of the latter bands falls below 0.89 for longer forecast horizons. 
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Table 6. RESULTS FOR DGP.B WITH ߙଵ = 1.8 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 92.63 
(12.28) 

88.82 
(10.89) 

87.65 
(10.73) 

87.46 
(10.69) 

NA 91.64 
(11.84) 

8 93.19 
(24.11) 

87.97 
(20.55) 

86.26 
(20.19) 

85.97 
(20.07) 

85.85 
(20.03) 

92.54 
(23.23) 

12 92.96 
(33.44) 

87.22 
(28.06) 

85.04 
(27.58) 

84.76 
(27.44) 

84.65 
(27.38) 

92.43 
ࢀ (32.35) =  

4 94.19 
(11.80) 

89.81 
(10.35) 

89.52 
(10.35) 

89.33 
(10.30) 

NA 93.56 
(11.43) 

8 95.34 
(22.44) 

89.75 
(18.94) 

89.26 
(18.96) 

89.01 
(18.86) 

88.92 
(18.83) 

95.03 
(21.74) 

12 95.60 
(29.94) 

89.66 
(25.06) 

89.03 
(25.13) 

88.80 
(25.02) 

88.71 
(24.97) 

95.29 
(29.11) 

 
Conclusions from the results for DGP.B (tables 3–6) are similar as those for 

DGP.A. Refined and the sup-t methods are most useful in larger samples and 
for predicting persistent processes for which the Bonferroni band tends to be too 
wide and have excessive coverage probability. The largest gains can be ob-
tained for larger samples for the sup-t and ܤଶ methods, for which the reduction 
in band width can be considerable (e.g. more than 15% for ߙଵ = 1.8, ܶ = 400 
and ܪ = 12). At the same time the coverage probabilities for these procedures 
are quite close to 0.9, especially in the case of the sup-t method. For prediction 
based on persistent processes and smaller data sets ்ܤ method could be se-
lected. 

As follows from the analysis of tables A1–A6, the findings for normal DGPs 
are to some extent, robust with respect to the distribution of the random errors. 
For more persistent processes with either chi-square errors or t-distributed er-
rors considered in tables A2–A3 and A5–A6, as previously, the ்ܤ procedure 
could be considered as most robust for all values of H for the smaller sample 
size, while sup-t or ܤଶ bands, which have very similar properties, would be the 
natural choice for larger samples. Some new effects can be observed for DGP.A 
with ߙ = 0.5, however. For the process with chi-square innovations (table A1), 
the Bonferroni bands still have the best coverage properties for ܶ = 100, howev-
er there is a new winner for ܶ = 400 given by the ்ܤ procedure. The ்ܤ bands 
do not undercover for any value of H and are narrower as compared to the Bon-
ferroni bands (by construction) and to the sup-t bands. As table A4 reveals, 
a different method, namely the sup-t procedure is most reliable for this less per-
sistent process with fat-tailed distribution of the error terms for both ܶ = 100 and ܶ = 400.  
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6. CONCLUSIONS 
 
Joint prediction bands are needed for forming expectations concerning the fu-

ture trajectory of a variable. The construction of such bands is usually based on 
the bootstrap predictive distribution. One of the classic approaches to build pre-
diction bands rests on the Bonferroni inequality. The drawback of this method is 
that the bands can be too wide and exhibit larger probability content than the 
nominal coverage rate. 

In this study two refinements of the Bonferroni band were considered in the 
context of predicting persistent univariate autoregressive processes. The first 
refinement used higher order Bonferroni-type inequalities, while the second con-
sisted in constructing the band from intervals with unequal coverage rates. The 
proposed bands were compared to the Bonferroni bands and the benchmark 
given by the sup-t procedure in a Monte Carlo study. 

Simulation results indicated that the refined bands were superior to the basic 
Bonferroni bands in a number of scenarios involving quite persistent processes. 
In particular, bands based on the second-order Bonferroni-type inequality 
worked well for relatively large samples where they exhibited similar properties 
as the sup-t bands, while the imbalanced Bonferroni method was preferable for 
smaller sample sizes.  
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APPENDIX 
 

A1.  
Table RESULTS FOR DGP.A WITH ߙ = 0.5 AND Χ2-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 90.54 
(5.28) 

88.85 
(5.34) 

89.16 
(5.08) 

88.93 
(5.05) 

NA 89.83 
(5.18) 

8 90.09 
(6.23) 

88.07 
(6.63) 

88.43 
(6.01) 

88.18 
(5.98) 

88.05 
(5.96) 

88.99 
(6.10) 

12 89.14 
(6.67) 

87.45 
(7.40) 

87.47 
(6.46) 

87.22 
(6.43) 

87.09 
(6.41) 

88.09 
(6.56) 
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A1. (cont.)  
Table RESULTS FOR DGP.A WITH ߙ = 0.5 AND Χ2-DISTRIBUTED ERRORS (cont.) 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 91.45 
(5.01) 

89.73 
(5.15) 

90.19 
(4.86) 

89.97 
(4.84) 

NA 90.86 
(4.93) 

8 90.06 
(6.82) 

89.78 
(6.48) 

88.47 
(6.43) 

88.35 
(6.40) 

88.28 
(6.39) 

90.67 
(5.75) 

12 91.40 
(6.32) 

89.43 
(7.14) 

89.65 
(6.10) 

89.51 
(6.08) 

89.41 
(6.07) 

90.32 
(6.18) 

 
A2.  

Table RESULTS FOR DGP.A WITH ߙ = 0.9 AND Χ2-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 92.01 
(6.97) 

89.43 
(6.55) 

89.25 
(6.39) 

88.84 
(6.32) 

NA 91.37 
(6.83) 

8 92.14 
(10.02) 

88.98 
(9.34) 

88.65 
(8.95) 

88.01 
(8.81) 

87.74 
(8.75) 

91.60 
(9.79) 

12 91.87 
(12.27) 

88.57 
(11.37) 

88.18 
(10.87) 

87.49 
(10.68) 

87.15 
(10.59) 

91.44 
ࢀ (12.01) =  

4 92.92 
(6.42) 

89.95 
(5.94) 

90.26 
(5.98) 

89.87 
(5.92) 

NA 92.45 
(6.30) 

8 93.89 
(8.78) 

89.93 
(8.15) 

90.48 
(8.05) 

89.92 
(7.95) 

89.68 
(7.91) 

93.39 
(8.62) 

12 94.17 
(10.30) 

89.92 
(9.58) 

90.59 
(9.41) 

89.95 
(9.29) 

89.65 
(9.24) 

93.66 
(10.11) 

 
A3. 

Table RESULTS FOR DGP.A WITH ߙ = 0.95 AND Χ2-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 92.25 
(7.15) 

89.66 
(6.66) 

89.38 
(6.52) 

88.96 
(6.45) 

NA 91.63 
(6.99) 

8 92.46 
(10.62) 

89.03 
(9.76) 

88.69 
(9.38) 

88.04 
(9.23) 

87.75 
(9.17) 

91.94 
(10.36) 

12 92.17 
(13.31) 

88.24 
(12.15) 

88.16 
(11.64) 

87.38 
(11.42) 

87.03 
(11.32) 

91.78 
ࢀ (13.00) =  

4 93.25 
(6.71) 

89.98 
(6.13) 

90.37 
(6.21) 

89.95 
(6.15) 

NA 92.77 
(6.59) 

8 94.46 
(9.66) 

89.99 
(8.75) 

90.79 
(8.74) 

90.15 
(8.63) 

89.86 
(8.57) 

94.06 
(9.47) 

12 94.91 
(11.81) 

90.01 
(10.62) 

90.98 
(10.62) 

90.24 
(10.45) 

89.91 
(10.38) 

94.52 
(11.58) 
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A4. 
Table RESULTS FOR DGP.A WITH ߙ = 0.5 AND t-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 88.69 
(5.71) 

88.87 
(5.43) 

87.51 
(5.44) 

87.31 
(5.40) 

NA 88.04 
(5.56) 

8 86.77 
(7.03) 

88.00 
(6.76) 

85.58 
(6.82) 

85.43 
(6.79) 

85.34 
(6.78) 

85.58 
(6.78) 

12 84.40 
(7.52) 

87.16 
(7.68) 

83.13 
(7.33) 

82.97 
(7.31) 

82.88 
(7.29) 

83.32 
ࢀ (7.34) =  

4 90.68 
(5.47) 

90.03 
(5.25) 

89.38 
(5.22) 

89.21 
(5.19) 

NA 90.12 
(5.37) 

8 90.06 
(6.82) 

89.78 
(6.48) 

88.47 
(6.43) 

88.35 
(6.40) 

88.28 
(6.39) 

89.25 
(6.63) 

12 89.36 
(7.71) 

89.56 
(7.26) 

87.85 
(7.25) 

87.71 
(7.22) 

87.64 
(7.20) 

88.35 
(7.41) 

 
A5. 

Table RESULTS FOR DGP.A WITH ߙ = 0.9 AND t-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 91.29 
(7.39) 

89.62 
(6.62) 

88.42 
(6.60) 

88.06 
(6.53) 

NA 90.67 
(7.20) 

8 91.31 
(10.43) 

89.14 
(9.35) 

87.71 
(9.23) 

87.13 
(9.09) 

86.89 
(9.03) 

90.72 
(10.16) 

12 90.81 
(12.58) 

88.56 
(11.35) 

87.08 
(11.10) 

86.39 
(10.92) 

86.09 
(10.83) 

90.42 
ࢀ (12.29) =  

4 92.93 
(6.97) 

90.10 
(6.12) 

89.74 
(6.14) 

89.42 
(6.07) 

NA 92.53 
(6.83) 

8 93.67 
(9.93) 

90.19 
(8.35) 

89.82 
(8.48) 

89.32 
(8.35) 

89.11 
(8.30) 

93.10 
(9.65) 

12 93.73 
(11.64) 

90.15 
(9.80) 

89.93 
(10.06) 

89.36 
(9.89) 

89.10 
(9.82) 

93.11 
(11.35) 

 
A6. 

Table RESULTS FOR DGP.A WITH ߙ = 0.95 AND t-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 91.61 
(7.62) 

89.77 
(6.77) 

88.62 
(6.75) 

88.24 
(6.67) 

NA 90.98 
(7.42) 

8 91.75 
(11.10) 

89.21 
(9.86) 

87.86 
(9.68) 

87.26 
(9.52) 

87.01 
(9.46) 

91.19 
(10.80) 

12 91.30 
(13.71) 

88.41 
(12.25) 

87.24 
(11.91) 

86.46 
(11.68) 

86.11 
(11.58) 

90.90 
(13.38) 
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A6. (cont.) 
Table RESULTS FOR DGP.A WITH ߙ = 0.95 AND t-DISTRIBUTED ERRORS (cont.) 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ ࢀ =  

4 93.25 
(7.29) 

90.11 
(6.32) 

89.81 
(6.35) 

89.47 
(6.28) 

NA 92.88 
(7.14) 

8 94.26 
(10.86) 

90.21 
(8.94) 

90.04 
(9.12) 

89.48 
(8.97) 

89.23 
(8.90) 

93.75 
(10.56) 

12 94.56 
(13.19) 

90.22 
(10.83) 

90.34 
(11.19) 

89.66 
(10.97) 

89.36 
(10.88) 

94.02 
(12.86) 

 
ZMODYFIKOWANE PASMA PREDYJKCYJNE BONFERRONIEGO  

DLA MODELI AUTOREGRESYJNYCH 
 

Streszczenie 
 

Pasma predykcyjne konstruuje się często z użyciem nierówności Bonferroniego. 
Wadą takich pasm może być ich duża rozpiętość i zawyżone prawdopodobieństwo 
zawierania przyszłej trajektorii prognozowanej zmiennej. W artykule zaproponowa-
no dwie poprawki dla metody konstrukcji bootstrapowych pasm predykcyjnych 
Bonferroniego wykorzystujące nierówności wyższego rzędu i procedurę minimali-
zacji szerokości pasma. Metody zastosowano do prognozowania jednowymiaro-
wych procesów autoregresyjnych. Ich właściwości zbadano za pomocą ekspery-
mentów Monte Carlo. Wykazano, że zaproponowane procedury prowadzą, w wiel-
ku przypadkach, do uzyskania stosunkowo wąskich pasm predykcyjnych o odpo-
wiednich prawdopodobieństwach zawierania przyszłej trajektorii zmiennej. 

Słowa kluczowe: pasmo predykcyjne, proces autoregresyjny, nierówność 
Bonferroniego 

 
REFINED BONFERRONI PREDICTION BANDS  

FOR AUTOREGRESSIVE MODELS 
 

Abstract 
 

Joint prediction bands are often constructed using Bonferroni’s inequality. The 
drawback of such bands may be their large width and excessive coverage prob-
ability. The paper proposes two refinements to the basic Bonferroni method of 
constructing bootstrap prediction bands. These are based on higher order ine-
qualities and optimization of the width of the band. The procedures are applied 
to the problem of predicting univariate autoregressive processes. Their proper-
ties are studied by means of Monte Carlo experiments. It is shown that the pro-
posed methods lead, in many scenarios, to obtaining relatively narrow prediction 
bands with desired coverage probabilities. 

Keywords: prediction band, autoregressive process, Bonferroni’s inequality 
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with cross-sectional cointegrating vectors2 

1. INTRODUCTION

 Cointegration analysis of non-stationary panel data is typically based on the 
univariate framework, see Phillips, Moon (1999), where the OLS-based cointe-
gration tests developed firstly by Kao (1999), Pedroni (1999) and McCoskey, 
Kao (1998) are considered and the DOLS or the FMOLS estimator is employed. 
Assuming lack of any long-run cross-sectional dependencies, this approach 
shall work reasonably well for small homogenous systems with one cointegrat-
ing vector. However, this will not be valid when the long-run cross-sectional 
dependencies occurs, for example due to cross-sectional cointegrating vector, 
see Banerjee et al. (2004) and Jacobson et al. (2008), as well as in case of 
medium- or large-sized systems with a number of cointegration vectors. Clearly, 
the panel VAR (PVAR) model proposed by Larsson, Lyhagen (2007) should be 
considered here, even though in case of lack of long-run cross-sectional de-
pendencies also the global VAR (GVAR) model can be applied, see Pesaran et 
al. (2004). 
 The multivariate cointegration analysis of panel data was considered first by 
Groen, Kleibergen (2003) and Larsson, Lyhagen (2007), who advocated use of 
VAR models for analysis of non-stationary panel data (see also Larsson, Ly-
hagen, 2000; Larsson et al., 2001 and Jacobson et al., 2008). Moreover, in the 
case of panel VAR framework, Anderson et al. (2006) suggested the use of lev-
els canonical correlation analysis (LCCA), as proposed by Box, Tiao (1977) and 
Bewley et al. (1994), instead of maximum likelihood (ML) estimation proposed 
by Johansen (1988). Anderson et al. (2006) highlight that they were able to find 
an additional cross-sectional cointegrating vector in empirical data using Box 
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and Tiao approach and the LCCA-based cointegration rank test, as opposed to 
the results suggested by Johansen’s tests. 
 The aforementioned finding of Anderson et al. (2006) provides a rationale for 
investigating small sample properties of cointegration rank tests for both Box 
and Tiao as well as Johansen approach in the framework of panel VAR process 
with cross-sectional cointegrating vectors. To this end, performance of the min-
root and the trace test of Yang, Bewley (1996) are compared with the widely 
used ML-counterparts derived by Johansen (1988) – the max-root and the trace 
test. 
 Since the cointegration rank tests suffer from severe size distortions in small 
samples, see Johansen (2002), the bootstrap tests are considered. The algo-
rithm of the bootstrap cointegration rank test is similar to algorithms proposed by 
van Giersbergen (1996) and Svensen (2006), and the asymptotic theory of the 
bootstrap method was given by Svensen (2006) and Cavaliere et al. (2012). 
Note however, that even when the bootstrap cointegration rank test or size-
corrected test like the test with Bartlett correction is used, some significant size 
distortions can still occur, especially for high dimensional process such as panel 
VAR. 
 The comparative investigations based on the purely time-series context are 
available in Bewley et al. (1994) and Bewley, Yang (1995). Moreover, perfor-
mance of canonical correlation estimators of cointegrating vectors for panel VAR 
models were investigated by Kębłowski (2016). 

 
2. PANEL VAR MODEL, CANONICAL CORRELATION ANALYSIS 

AND COINTEGRATION TESTS 

 
 Consider two main strands of model’s specification for the panel VAR/VEC 
process. The first one would be the straightforward panel augmentation of the 
VEC model for the double-indexed processes 

 
௧ܡ∆  = મܡ,௧ିଵ +  ડΔܡ,௧ି + ܌௧ + ௧,ିଵࢿ

ୀଵ  (1)

 
where ܡ௧ = ሾݕଵ௧  ݕଶ௧  ௧ሿ′ is a P-dimensional vector of observations for givenݕ …
cross-section ݅ and period ݐ, મ, and ડ are ܲ × ܲ matrices of coefficient, ܌௧ and  denote a N-dimensional vector of (common) deterministic components and  ܲ × ܰ matrix of their coefficients and ઽ௧ is a P-dimensional independently and 
identically distributed error term with mean equal to zero and covariance matrix ષ for cross-section ݅. 
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 Consider next the following VEC model for the panel VAR process 
 
௧ܡ∆  = મܡ௧ିଵ +  ડΔܡ௧ି + ܌௧ + ઽ௧ିଵ

ୀଵ , (2)

 
where ܡ௧ = ሾܡଵ௧ᇱ ଶ௧ᇱܡ   ூ௧ᇱܡ … ሿ′ is a IP-dimensional vector of observations for period  ݐ, મ and ડ are ܲܫ × ܲܫ matrices of coefficient,  denotes ܲܫ × ܰ matrix of deter-
ministic term coefficients and ઽ௧ is a IP-dimensional independently and identically 
distributed error term with mean equal to zero and covariance matrix ષ.  
 
 In case of the cointegrated panel VAR process matrix મ can be decomposed 
into ܲܫ ×  and ۰, and the panel VEC model is ۯ full rank matrices ܴܫ
 
ܡ∆  = ௧ିଵܡ′۰ۯ +  ડΔܡ௧ି + ܌௧ + ઽ௧.ିଵ

ୀଵ  (3)

 
 Clearly, model (1) assumes lack of any cross-sectional dependencies, where-
as model (2) allows for both short- and long-run cross-sectional dependencies, 
since ۰ ,ۯ, ડ and ષ matrices are not assumed to be block-diagonal (even 
though in practice ۰ is most often assumed to be block-diagonal, see Larsson, 
Lyhagen, 2007). This allows for four different sources of cross-sectional de-
pendence: in the error term, in the short-run dynamics, in the adjustments to the 
long-run equilibrium and in the cointegration space, as opposed to the assump-
tions of model (1), and is the main rationale for using model (2) instead of model 
(1). The only, but significant, disadvantage of using model (2) is the potential 
dimensionality effect that can limit its application for small samples in case of 
a large number of cross-sections and variables simultaneously. 
 The levels canonical correlation analysis of Box and Tiao is performed as 
follows. At first, the short-run effects are concentrated out and the concentrated 
regression is 
 
௧ܡ  = દܡ௧ିଵ + ઽ௧, (4)
 
where ܡ௧ିଵ = ௧ܡ − ௧ିଵܡ  ,௧ܢ௧′ሻିଵܢ௧ܢ௧′ሺܢ௧ܡ = ௧ିଵܡ −   ௧ܢ௧′ሻିଵܢ௧ܢ௧′ሺܢ௧ିଵܡ
and ࢠ௧ = ሾΔ࢟௧ିଵ′ …  Δܡ௧ିାଵ′܌୲′ሿ′. 
 
 Next, the canonical transformation is achieved by solving the eigenvalue prob-
lem 
 
 ห܇ߣ෩܇෩ᇱ − ൫܇෩܇෩ିଵ൯൫܇෩ିଵ܇෩ିଵ൯ିଵ൫܇෩ିଵ܇෩൯ห = 0 (5)
 
for the eigenvalues 0 < መଵߣ < ⋯  < መூߣ < 1  and eigenvectors ܄ = ሾܞොଵ  ොூሿ, ofܞ …
which the first ܴܫ constitute the cointegration subspace. 
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 To compute the cointegration tests of Yang, Bewley (1996), the following se-
ries are calculated 
 
ො௧ିଵܡ  = ො௧ିଵ (6a)ܡୄ′ۯ
 
and 
 
ො௧ܡ  = ො௧ିଵܡ + ௧, (6b)܍′ୄ۱ۯ
 
where ܍௧ denotes residuals from concentrating out the short-run effects in (4) 
and ۱ is the impact matrix from the moving average representation,  ۱ = ۰′ୄ൫ۯୄ′ડ۰ୄ൯ିଵۯୄ and ડ = ۷ − ∑ ડ݇1=1݇−ܭ .  
 
 Then the following eigenvalue problem is solved 
 
 ห܇ߤ෩܇෩ᇱ − ൫܇෩܇෩ିଵ′൯൫܇෩ିଵ܇෩ିଵ′൯ିଵ൫܇෩ିଵ܇෩′൯ห = 0 (7)
 
for the eigenvalues 0 < ଵߤ̂ < ⋯  < ூሺିோሻߤ̂ < 1. The LCCA-based cointegration 
rank tests of the null ܪ: rank ሺમሻ = :ଵܪ vs. the alternative ܴܫ rank ሺમሻ =  are ܴܫ
calculated as the minimum-root test ݉݅݊ݐݎ = ܶሺ1 − ݁ܿܽݎݐ ଵሻ and the trace testߤ̂ = ܶ ∑ ൫1 − ൯ூሺିோሻୀଵߤ̂ . Both tests diverge under the alternative, see 
Yang, Bewley (1996). 
 
 Similarly, the canonical correlation analysis of differences and lagged levels, 
derived by Johansen (1988), is calculated by concentrating out at first the short-
run effects, thus the concentrated regression is 
 
 Δܡො௧ = ௧ିଵ. (8)ܡ′۰ۯ
 
 Then the canonical transformation is performed by solving 
 
 ห܇ߣ෩ିଵ܇෩ିଵᇱ − ൫܇෩ିଵΔ܇෩′൯൫Δ܇෩Δ܇෩′൯ିଵ൫Δ܇෩܇෩ିଵ′൯ห = 0 (9)
 
for the eigenvalues 1 < መଵߣ < ⋯  < መூߣ < 0 and ۰ = ሾܞොଵ  ොூோሿ. The cointegrationܞ …
tests of the same hypotheses as in Yang, Bewley (1996) are calculated as the 
maximum-root test ݉ܽݐݎݔ = −ܶln൫1 − ݁ܿܽݎ መூோାଵ൯ and the trace testߣ =−ܶ ∑ ln൫1 − መ൯ூୀூோାଵߣ . 
 

3. DESIGN OF EXPERIMENT AND RESULTS 
 
 Monte Carlo simulation is used to compare performance of the LCCA-based 
and the ML-based cointegration rank tests within the framework of second-order 
panel VEC model (3) with five variables for each cross section ሺܲ = 5ሻ and 
a constant restricted to the cointegration space 
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 Δܡො௧ = ௧ିଵᇱܡ۰ᇱሾۯ ᇱሿᇱܒ + ડଵΔܡ௧ିଵ + ઽ௧, (10)
 
where short- and long-run cross-sectional dependencies are allowed and the 
error term tε  comes from the multivariate normal distribution, ઽ௧ ∽ ூܰሺ; ષሻ, 
with covariance matrix from the inverse Wishart distribution – ∽ ூܹିଵሺ۷; 100ሻ.  
 
 The results for the case with an unrestricted constant are not reported here 
(available upon request), since they do not alter the conclusions drawn from the 
former case. Two cointegrating vectors for each cross-section are imposed plus 
an additional cross-sectional cointegrating vector describing a homogeneous 
long-run relationship between the fifth variable of each cross-section 
 
 

۰ =
ێێۏ
ێێێ
ۍێ 1 − 10 000 0 1 − 10  ⋯  11 1 − 10 0 00 0 1 − 10 ⋯  11⋮ ⋮ ⋮ ⋮  ⋯ 1 − 10 000 01 − 10 110 0 0 0 1 ߚ 0 0 0 0 ⋯ ߚ 0 0 0 0 ۑۑے1

ۑۑۑ
(11) ,ېۑ

 
where ߚ = −൫1/ሺܫ − 1ሻ൯. The loadings matrix allows for the long-run cross- 
-sectional adjustments 
 
ۯ  = ێێۏ

0.5−ۍێێ 0 0 0 0 … −0.1 0 0 0 00 0 −0.5 0 0 0 0 −0.1 0 0⋮ ⋮−0.1 0 0 0 0 … −0.5 0 0 0 00 0 −0.1 0 0 0 0 −0.5 0 00 0 0 0 −0.5 … 0 0 0 0 ۑۑے0.5−
(12) .ېۑۑ

 
 The cross-sectional dependence in the short-run adjustments is allowed, 
since ∀సೕ ,ଵߛ = 0.5 and ∀ಯೕ -,ଵ~ܷሺ−0.1,0.1ሻ. The roots of the autoregressive polߛ

ynomial are computed in order to exclude explosive roots in the DGP. The initial 
values comes from the multivariate normal distribution and the first hundred 
observations are removed. The number of cross-sections varies from two to six 
and the sample size is ܶ ∈ ሼ100, 200, 400, 800ሽ. The number of replications for 
the Monte Carlo simulation is 10000. 
 The algorithm of the bootstrap method for cointegration rank tests is similar to 
algorithms proposed by van Giersbergen (1996) and Svensen (2006), and it is 
as follows: 
Step 1. Estimate (2) by means of LCCA, for ݉݅݊ݐݎ and ݁ܿܽݎݐ tests, or 

ML for ݉ܽݐݎݔ and ݁ܿܽݎݐ tests, and calculate a realization of the test 
statistic. 
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Step 2. Estimate the parameters under the null – (3) and check whether the 

roots of the autoregressive polynomial are equal to 1 or lie outside the 
unit circle. 

Step 3. Using (3) compute recursively bootstrap sample using sampled residuals 
drawn with replacement from the estimated residuals. 

Step 4. Calculate bootstrap realization of the test statistic. 
Step 5. Repeat steps 3 to 4 a large number of times. 
Step 6. Reject the null ܪ: rank ሺમሻ = -if the test statistic from step (1) is larg  ܴܫ

er than the critical value from the bootstrap distribution. 
The number of replications for the bootstrap method is 1000. 
 The relative frequencies of rejecting the false null ܪ: rank ሺમሻ =  and the  ܴܫ
true null ܪ: rank ሺમሻ = ܴܫ + 1 of bootstrap cointegration tests for PVAR model 
(10) are contained in tables 1–2 respectively. Comparison of the empirical size 
of the tests reveals that the ML-based cointegration rank tests ݉ܽݐݎݔ and ݁ܿܽݎݐ are undersized in small samples, as compared to 5% nominal size, 
whereas the LCCA-based cointegration rank tests ݉݅݊ݐݎ and ݁ܿܽݎݐ 
are oversized. The size distortion becomes negligible in general only for a quite 
long samples of at least 400 observations within time dimension, even though 
for PVAR models with moderate dimension ሺܲܫ ≤ 20ሻ and 200 observations it 
seems to be still under control. 

 
Table 1. EMPIRICAL SIZE OF BOOTSTRAP COINTEGRATION TESTS FOR PANEL 

VAR PROCESS WITH CROSS-SECTIONAL COINTEGRATING VECTOR 

I T 
ML LCCA 

maxroot trace minroot trace 

2 100 0.025 0.045 0.124 0.134 
 200 0.058 0.081 0.065 0.057 
 400 0.057 0.088 0.049 0.037 
 800 0.056 0.053 0.043 0.033 

3 100 0.000 0.008 0.306 0.308 
 200 0.046 0.050 0.108 0.082 
 400 0.057 0.056 0.052 0.039 
 800 0.052 0.064 0.036 0.020 

4 100 0.000 0.001 0.240 0.777 
 200 0.021 0.036 0.090 0.079 
 400 0.040 0.057 0.061 0.039 
 800 0.048 0.048 0.029 0.015 

5 100 0.000 0.000 0.334 0.959 
 200 0.000 0.012 0.217 0.226 
 400 0.052 0.064 0.066 0.052 
 800 0.066 0.073 0.054 0.030 

6 100 — — — — 
 200 0.000 0.002 0.225 0.557 
 400 0.049 0.065 0.075 0.065 
 800 0.048 0.063 0.046 0.026 
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Table 2. PERFORMANCE OF BOOTSTRAP COINTEGRATION TESTS FOR PANEL 
VAR PROCESS WITH CROSS-SECTIONAL COINTEGRATING VECTOR 

I T 
ML LCCA 

maxroot trace minroot trace 

2 100 0.540 0.432 0.280 0.320 
 200 1.000 0.999 0.619 0.495 
 400 1.000 1.000 1.000 1.000 
 800 1.000 1.000 1.000 1.000 

3 100 0.002 0.026 0.447 0.540 
 200 0.948 0.735 0.431 0.486 
 400 1.000 1.000 0.987 0.965 
 800 1.000 1.000 0.997 0.987 

4 100 0.000 0.002 0.354 0.875 
 200 0.298 0.293 0.605 0.559 
 400 1.000 0.999 0.989 0.922 
 800 1.000 1.000 0.992 0.957 

5 100 0.000 0.000 0.386 0.969 
 200 0.004 0.074 0.798 0.740 
 400 1.000 0.915 0.990 0.899 
 800 1.000 1.000 0.998 0.955 

6 100 — — — — 
 200 0.000 0.017 0.546 0.871 
 400 0.990 0.638 0.992 0.880 
 800 1.000 1.000 0.993 0.931 

 
 With respect to performance of both group of cointegration rank tests it can be 
seen that both the ML-based approach as well as the LCCA-based approach 
perform very poorly in short samples, as compared to the actual size of each 
test 0.05. According to the results, it is very likely that in a very short samples of 
100 observations in time dimension and less, the LCCA-based cointegration 
rank tests will indicate at an additional cross-sectional cointegrating vector, the 
ML-based counterparts will lead to an opposite conclusion, all this regardless of 
the actual existence of the cross-sectional cointegrating vector. 
 Moreover, even though the performance of the tests is not size-adjusted, it 
can be easily noted that the ML-based cointegration rank tests perform in gen-
eral better than their LCCA-based counterparts in detecting an additional cross-
sectional cointegrating vector within a PVAR framework, see the results for ܶ = 200 and ܫ = 2, 3 for example. As expected, in the case of long panel data 
with 400 observations within time dimension and more, performance of both 
approaches is close to unity and thus comparable. 
 The results of Monte Carlo investigation on small sample properties of boot-
strap cointegration rank tests for the PVAR model clearly suggest that the tests 
based on levels canonical correlation analysis are in general outperformed by 
the maximum likelihood cointegration rank tests, if the dynamic properties of the 
underlying process are properly specified. Moreover, the higher the number of 
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cross-sections is, the more observations within time dimension is needed in 
order to unambiguously infer on the cointegration rank for the PVAR model. 
If the dimension of the PVAR model ܲܫ exceeds 15 then as many as 400 obser-
vations can be needed in order to properly identify an additional cross-sectional 
cointegrating vector using the ML-based approach. 
 Clearly, the results show that the application of the bootstrap panel cointegrat-
ing rank test for the PVAR model given by (2) is in practice limited to the panels 
with few cross-sections, which makes the application of the tests for macro-
economic panels with larger cross-sectional dimension impossible in fact. This is 
an important drawback of the approach based on the PVAR model. 
 

4. CONCLUSIONS 
 

 In this paper we have examined small sample properties of the bootstrap 
cointegration rank tests for the unrestricted panel VAR model when short- and 
long-run cross-sectional dependencies occur in the underlying process generat-
ing non-stationary panel data. Two basic frameworks were employed: levels 
canonical correlation analysis and maximum likelihood estimation. The results 
shows that the bootstrap cointegration rank tests for the panel VAR model suffer 
from severe size distortions in small samples, with downward bias of the 
ML-based tests and the upward bias of the LCCA-based tests. Weak perfor-
mance of both approaches is observed for a very short sample of about 100 
observations within time dimension. As a result, the LCCA-based cointegration 
rank tests will easily indicate at an additional cross-sectional cointegrating vec-
tor, the ML-based counterparts can lead to an opposite conclusion, all this re-
gardless of the actual existence of the additional cointegrating vector. Moreover, 
it was found that the bootstrap cointegration rank tests for panel VAR model 
based on levels canonical correlation analysis are in general outperformed by 
the maximum likelihood cointegration rank tests. 
 The results of the investigation indicate that the bootstrap ML-based cointe-
gration rank tests perform quite well with respect to size distortion and power for 
small- and medium-sized PVAR models ሺܲܫ < 20ሻ, if there are at least 200 ob-
servations within time dimension. Whereas in case of large-sized PVAR models, 
say ሺܲܫ ≥ 20ሻ, long panel data with about 400 observations within time dimen-
sion are necessary. 
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ANALIZA MONTE CARLO WŁASNOŚCI TESTÓW KOINTEGRACJI 
DLA PANELOWEGO PROCESU VAR Z MIĘDZYPRZEKROJOWYMI 

WEKTORAMI KOINTEGRUJĄCYMI 
 

Streszczenie 
 

 W artykule przedstawiono wyniki badania własności bootstrapowych testów 
kointegracji dla panelowego procesu VAR z międzyprzekrojowymi wektorami 
kointegrującymi. Wyniki badania wskazują, że bootstrapowe testy kointegracji 
dla modelu PVAR, które oparte są na analizie korelacji kanonicznej poziomów, 
cechują się przeszacowaniem rozmiaru testu, z kolei bootstrapowe testy kointe-
gracji dla modelu PVAR wywiedzione z metody największej wiarygodności cha-
rakteryzują się zwykle niedoszacowaniem rozmiaru testu. Wykazano również, że 
bootstrapowe testy kointegracji dla modelu PVAR wywiedzione z metody naj-
większej wiarygodności cechują się zwykle lepszymi własnościami ze względu 
na moc testu. Wyniki badania wskazują, że własności bootstrapowych testów 
kointegracji dla modelu PVAR wywiedzionych z metody największej wiarygod-
ności cechują się satysfakcjonującymi własnościami małopróbkowymi dla mało-
wymiarowych modeli PVAR z ograniczoną liczbą przekroi. 
 Słowa kluczowe: międzyprzekrojowe wektory kointegrujące, analiza korelacji 
kanonicznej, testy kointegracji, panelowy model VAR, procedura Boxa i Tiao 

 
A MONTE CARLO COMPARISON OF LCCA- AND ML-BASED 

COINTEGRATION TESTS FOR PANEL VAR PROCESS 
WITH CROSS-SECTIONAL COINTEGRATING VECTORS 

 
Abstract 

 
 Small-sample properties of bootstrap cointegration rank tests for unrestricted 
panel VAR process are considered when long-run cross-sectional dependencies 
occur. It is shown that the bootstrap cointegration rank tests for the panel VAR 
model based on levels canonical correlation analysis are oversized, whereas the 
bootstrap cointegration rank tests based on maximum likelihood framework are 
undersized. Moreover, the former tests are in general outperformed by the latter 
in terms of performance. The results of the investigation indicate that the  
ML-based bootstrap cointegration rank tests perform well in small samples for 
small-sized panel VAR models with a few cross-sections. 
 Keywords: cross-sectional cointegrating vectors, canonical correlation analy-
sis, cointegration tests, panel VAR model, Box and Tiao approach 
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1. INTRODUCTION

 By a financial asset we understand an authorization to receive a future finan-
cial revenue, payable to a certain maturity. The value of this revenue is inter-
preted as anticipated future value (FV) of the asset. According to the uncertainty 
theory (von Mises, 1962; Kaplan, Barish, 1967), any unknown future state 
is uncertain. This uncertainty stems from of our lack of knowledge about the 
future. Yet, in the researched case, we can point out this particular time in the 
future, in which the considered income value will be already known to the ob-
server. After Kolmogorov (1933, 1956), von Mises (1957), Lambalgen (1996), 
Sadowski (1976, 1980), Czerwiński (1960, 1969), Caplan (2001) we will accept 
this as a sufficient condition for modelling the uncertainty with probability. All this 
leads to a conclusion that FV is a random variable. 
 The main focus of following research is present value (PV), defined as a pre-
sent equivalent of a payment available in a given time in the future. PV of future 
cash flows is widely accepted to be an approximate value, with fuzzy numbers 
being one of the main tools of its modelling. Ward (1985) defined fuzzy PV as 
a discounted fuzzy forecast of a future cash flow’s value. Fuzzy numbers were 
introduced into financial arithmetic by Buckley (1987). As a result, Ward’s defi-
nition was then further generalized by Greenhut et. al (1995), Sheen (2005) and 
Huang (2007), who expands Ward's definition to the case of a future cash flow 
given as a fuzzy variable. More general definition of fuzzy PV was proposed by 
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Tsao (2005), who assumes that future cash flow can be treated as a fuzzy 
probabilistic set. All those authors depict PV as a discounted, imprecisely esti-
mated future cash flow. A different approach was given by Piasecki (2011, 
2014), where fuzzy PV was estimated by a current market value of the financial 
asset.  
 Piasecki (2011) showed that if the PV of an asset is a fuzzy real number, then 
its return rate is a fuzzy probabilistic set (Hirota, 1981). Works of Buckley (1987), 
Gutierrez (1989), Kuchta (2000) and Lesage (2001) have previously proved the 
sensibility of using triangular or trapezoidal fuzzy numbers as a fuzzy financial 
arithmetic tool.  
 In Siwek (2015) two cases of a simple two-asset portfolio with fuzzy triangular 
and trapezoidal present value were researched. After Markowitz (1952), both 
articles assume normal distribution of simple return rates, with fuzzy expected 
return rate being the main tool of an asset assessment. Nonetheless, the results 
of performed research were highly complicated in forms of energy and entropy 
measures for the portfolio expected return rate, which made it difficult to contin-
ue researching the topic. 
 In Piasecki, Siwek (2017) an alternative approach is suggested to solve the 
problem researched in Siwek (2015). The fuzzy discount factor is used for ap-
praising the financial instrument with triangular fuzzy PV. Regretfully, entropy 
measure of an arbitrary triangular fuzzy number is constant, which makes it diffi-
cult to analyze the impact of the diversification on imprecision of a portfolio as-
sessment. On the other hand, trapezoidal fuzzy numbers do not have this disad-
vantage. Thus, the main purpose of presented article is to generalize these re-
sults to the case where PVs of portfolio assets are given by trapezoidal fuzzy 
numbers. In addition, in our considerations, the two-asset portfolio will be re-
placed with a more general multiple asset portfolio. This way we can extend the 
possibility of managing the risk burdening a multi-asset portfolio, constructed 
with use of an imprecise information stemming from present value of component 
assets. 
 

2. ELEMENTS OF FUZZY NUMBER THEORY 
 
 By ℱ(ℝ) we denote a family of all fuzzy subsets of a real line ℝ. Dubois, Pra-
de (1979) define a fuzzy number as a fuzzy subset ܭ ∈ ℱ(ℝ), represented by 
membership function ߤ ∈ ሾ0; 1ሿℝ which4 satisfies following conditions 
 

 ∃௫∈ℝ ߤ(ݔ) = 1, (1)

                      
4 Symbol ሾ0; 1ሿℝ denotes the family of all function from the real line ℝ into the interval ሾ0,1ሿ. 
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 ∀(௫,௬,௭)∈ℝయ:  ݔ ≤ ݕ ≤ ݖ ⟹ (ݕ)ߤ  minሼߤ(ݔ), ሽ. (2)(ݖ)ߤ
 
 The set of all fuzzy numbers will be denoted as ॲ. Arithmetic operations on 
fuzzy numbers were defined by Dubois, Prade (1978). By ⊚ we denote the ordi-
nary arithmetic operation ∘ generalized to the case of fuzzy numbers. According 
to the Zadeh's Extension Principle (Zadeh, 1965), a sum of fuzzy numbers ܭ, ܮ ∈  ॲ  represented by their corresponding membership functions ߤ, ߤ ∈ሾ0; 1ሿℝ is a fuzzy subset 
 

ܯ  = ܭ ⊕ (3) ܮ
 
described by its membership function ߤெ ∈ ሾ0; 1ሿℝ 
 

(ݖ)ெߤ  = supሼߤ(ݔ) ∧ ݖ)ߤ − ݔ :(ݔ ∈ ℝሽ. (4)
 
 The sum of the sequence ሼܭሽୀଵ ⊂ ॲ we denote by 
 

 ⊕ୀଵ ܭ = ଵܭ ⊕ ଶܭ ⊕ … ⊕ . (5)ܭ
 
 Analogously, the multiplication of a real number ݕ ∈ ℝା and a fuzzy number ܭ ∈ ॲ represented by membership function ߤ ∈ ሾ0; 1ሿℝ is a fuzzy subset 
 

 ܰ = ݕ ⊙ (6) ܭ
 
described by its membership function ߤே ∈ ሾ0; 1ሿℝ  
 

(ݖ)ேߤ  = ߤ ൬ݕݖ൰. (7)

 
 Moreover, if ݕ = 0, then the multiplication (6) is equal to zero. The class of 
fuzzy real numbers is closed under the operations (3) and (6). Our further re-
search will be limited to the case of fuzzy numbers with bounded support. 
 Fuzzy numbers are widely used for modeling assessments or estimations of 
a parameter given imprecisely. After Klir (1993) we understand imprecision as 
a superposition of ambiguity and indistinctness of information. Ambiguity can be 
interpreted as a lack of a clear recommendation between one alternative among 
various others. Indistinctness is understood as a lack of explicit distinction be-
tween recommended and not recommended alternatives. An increase in infor-
mation imprecision makes it less useful and therefore it is logical to consider the 
problem of imprecision assessment. 
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 We measure the ambiguity of a fuzzy number by applying the Khalili’s meas-
ure (1979) to the energy measure ݀: ℱ(ℝ) →  ℝା  defined by de Luca, Termi- 
ni (1979). For an arbitrary fuzzy number ܭ ∈ ॲ , with membership function ߤ ∈ ሾ0; 1ሿℝ we have 
 

(ܭ)݀  = න ାஶݔ݀(ݔ)ߤ
ିஶ . (8)

 
 The indistinctness of an arbitrary fuzzy number can be measured by its entro-
py ݁: ℱ(ℝ) → ℝା, also defined by de Luca, Termini (1972) and in form given by 
Kosko (1986). For an arbitrary fuzzy number ܭ ∈ ॲ we have 
 

(ܭ)݁  = ܭ)݀ ∩ ܭ))݀൫ܭ ∪ (ܭ ∩ ॺ(ܭ)൯, (9)

 
where ॺ(ܭ) = ሼݔ ∈ ℝ: ߤ(ݔ) > 0ሽ. 
 
 The main focus of this study is a trapezoidal fuzzy number. The fuzzy number ܶݎ)ݎ, ,ݏ ,ݐ ,ݎdefined for a non-decreasing sequence ሼ ,(ݑ ,ݏ ,ݐ ሽݑ ⊂ ℝ with a mem-
bership function ߤ(∙ ,ݎ| ,ݏ ,ݐ (ݑ ∈ ሾ0,1ሿℝ given by the formula 
 

,ݎ|ݔ)ߤ  ,ݏ ,ݐ (ݑ =
۔ۖۖەۖۖ
ۓ 0           for         ݔ < ݔ,ݎ − ݏݎ − ݎ     for    ݎ ≤ ݔ < ݏ     for             1,ݏ ≤ ݔ ≤ ݔ,ݐ − ݐݑ − ݑ      for     ݐ < ݔ ≤ ݔ          for           0,ݑ > ,ݑ

 (10)

 
is a trapezoidal fuzzy number.  
 
 For any arbitrary pair of trapezoidal fuzzy numbers, ܶݎ)ݎଵ, ,ଵݏ ,ଵݐ  (ଵݑ
and ܶݎ)ݎଶ, ,ଶݏ ,ଶݐ ,ܽ ଶ) andݑ ܾ ∈ ℝା we have: 
 

ଵݎܽ)ݎܶ  + ,ଶݎܾ ଵݏܽ + ,ଶݏܾ ଵݐܽ + ,ଶݐܾ ଵݑܽ + (ଶݑܾ = = ൫ܽ ⊙ ,ଵݎ)ݎܶ ,ଵݏ ,ଵݐ ଵ)൯ݑ ⊕ ൫ܾ ⊙ ,ଶݎ)ݎܶ ,ଶݏ ,ଶݐ ଶ)൯, (11)ݑ

 

 ݀൫ܶݎ)ݎଵ, ,ଵݏ ,ଵݐ ଵ)൯ݑ = 12 ଵݑ) + ଵݐ − ଵݎ − ଵ), (12)ݏ

 

 ݁൫ܶݎ)ݎଵ, ,ଵݏ ,ଵݐ ଵ)൯ݑ = ଵݏ − ଵݎ + ଵݑ − ଵݏ−ଵݐ − ଵݎ3 + ଵݑ3 + ଵ. (13)ݐ



K. Piasecki, J. Siwek    Multi-asset portfolio with trapezoidal fuzzy… 187 
 

 

3. RETURN RATE FROM A FINANCIAL ASSET 
 
 All calculations in this article are performed for a fixed time ݐ > 0. We use 
simple return rates ݎ௧ defined as 
 

௧ݎ  = ௧ܸ − ܸܸ , (14)

 
where: 
 —  ௧ܸ is a FV described by random variable ෨ܸ௧: Ω → ℝ; —  ܸ is a PV assessed precisely or approximately. 
 
 Variable FV is described by a relation  
 

 ෨ܸ௧(߱) = ሙܥ ∙ ൫1 + ௧(߱)൯, (15)ݎ̃
 
where the simple return rate ̃ݎ௧: Ω → ℝ is determined for PV equal to the market 
price ܥሙ. After Markowitz (1952) we assume that ̃ݎ rate has a normal probability 
distribution ܰ(̅ݎ,  .(ߪ
 
 Moreover, in the researched case we assume that the PV is estimated by 
a trapezoidal fuzzy number ܶݎ൫ܥሙ, ,∗ሙܥ ,∗ሙܥ ,ሙ௫൯ܥ  determined by membership 
function ߤ ∈ ሾ0,1ሿℝ described by (10). This condition was initially introduced by 
Kuchta (2000) and applied in Siwek (2015). Parameters of the trapezoidal fuzzy 
number ܶݎ൫ܥሙ, ,∗ሙܥ ,∗ሙܥ  :ሙ௫൯ are interpreted as followsܥ
 
 ,ሙ is the market priceܥ —
ሙܥ — ∈ ൧0,  ,ሙ൧ is the maximal lower bound of PVܥ
,ሙܥൣ ሙ௫ܥ — +∞ൣ is the minimal upper bound of PV, 
∗ሙܥ — ∈ ,ሙܥൣ ሙ൧ is the minimal upper assessment of prices visibly lower thanܥ

the market price ܥሙ, 
∗ሙܥ — ∈ ,ሙܥൣ ሙ௫൧ is the maximal lower assessment of prices visibly higher thanܥ

the market price ܥሙ. 
 
 Methods of determining parameters ܥሙ,  ሙ௫ are given in Piasecki, Siwekܥ
(2015). These parameters are non-negative. 
 According to the Zadeh's Extension Principle, a simple return rate for PV giv-
en as a trapezoidal fuzzy number is a fuzzy probabilistic set with membership 
function ߩ ∈ ሾ0; 1ሿℝൈஐ   
 

,ݎ)ߩ  ߱) = sup ቊߤ൫ݔหܥሙ; ;∗ሙܥ ;∗ሙܥ :ሙ௫൯ܥ ݔ = ෨ܸ௧(߱)1 + ݎ , ݔ ∈ ℝቋ = (16)
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 = ߤ ቀ෩(ఠ)ଵା ቚܥሙ; ;∗ሙܥ ;∗ሙܥ ሙ௫ቁܥ = ߤ ቀܥሙ ଵା̃(ఠ)ଵା ቚܥሙ; ;∗ሙܥ ;∗ሙܥ  .ሙ௫ቁܥ

 
 According to (10), formula (16) can be transformed into  
 

,ݎ)ߩ  ߱) =
ەۖۖۖ
۔ۖۖ
ሙܥۓۖۖۖ 1 + ௧(߱)1ݎ̃ + ݎ − ∗ሙܥሙܥ − ሙܥ ,    for   ܥሙ ≤ ሙܥ 1 + ௧(߱)1ݎ̃ + ݎ < ∗ሙܥ     ሙ∗,1,                                        forܥ ≤ ሙܥ 1 + ௧(߱)1ݎ̃ + ݎ < ሙܥ,∗ሙܥ 1 + ௧(߱)1ݎ̃ + ݎ − ∗ሙܥሙ௫ܥ − ሙ௫ܥ ,   for      ܥሙ∗ < ሙܥ 1 + ௧(߱)1ݎ̃ + ݎ ≤ ሙܥ      ሙ௫,0,            forܥ 1 + ௧(߱)1ݎ̃ + ݎ > ,ሙ௫ܥ ሙܥ 1 + ௧(߱)1ݎ̃ + ݎ < .ሙܥ

 (17)

 
 Thus, the expected return rate ܴ ∈ ॲ is a fuzzy number with membership func-
tion ߩ ∈ ሾ0,1ሿℝ:  
 

(ݎ)ߩ  =
ەۖۖ
۔ۖۖ
ሙܥۓۖۖ 1 + 1ݎ̅ + ݎ − ∗ሙܥሙܥ − ሙܥ ,    for   ܥሙ ≤ ሙܥ 1 + 1ݎ̅ + ݎ < ∗ሙܥ     ሙ∗,1,                                forܥ ≤ ሙܥ 1 + 1ݎ̅ + ݎ < ሙܥ,∗ሙܥ 1 + 1ݎ̅ + ݎ − ∗ሙܥሙ௫ܥ − ሙ௫ܥ ,   for      ܥሙ∗ < ሙܥ 1 + 1ݎ̅ + ݎ ≤ ሙܥ       ሙ௫,0,            forܥ 1 + 1ݎ̅ + ݎ > ,ሙ௫ܥ ሙܥ 1 + 1ݎ̅ + ݎ < .ሙܥ

 (18)

 
 The expected discount factor ߭̅ calculated using the return rate ̅ݎ is given by 
identity 
 

 ߭̅ = 11 + (19) ݎ̅

 
which is its definition. Therefore, the function ߜ ∈ ሾ0; 1ሿℝ described by 
 

(ݒ)ߜ  = ߜ ൬ 11 + ൰ݎ = (20) (ݎ)ߩ 

 
is a membership function of the expected discount factor ܦ ∈ ॲ calculated using 
the expected return rate ܴ ∈ ॲ. Combining both (18) and (20) we get 
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(ݒ)ߜ  =
ەۖۖۖ
۔ۖ
ۓۖۖ ݒሙܥ − ∗ሙܥݒሙ̅ܥݒ̅ − ሙܥݒ̅       for       ̅ܥݒሙ ሙܥ ≤ ݒ ≤ ሙܥݒ̅ ሙܥݒ̅      ሙ∗, 1                            forܥ ∗ሙܥ < ݒ < ሙܥݒ̅ ݒሙܥ,∗ሙܥ  − ∗ሙܥ ݒሙ௫̅ܥݒ̅ − ሙ௫ܥݒ̅     for      ̅ܥݒሙ ∗ሙܥ  < ݒ ≤ ሙܥݒ̅ ሙܥݒ̅      ሙ௫,       0                      forܥ ሙ௫ܥ < ,ݒ ݒ < ሙܥݒ̅ .ሙܥ

 (21)

 
 One can see that the expected fuzzy discount factor stated above is also 
a trapezoidal fuzzy number ܶݎ ቀܥሙ ௩തሙ , ∗ሙܥ ௩തሙ , ∗ሙܥ ௩തሙ , ሙ௫ܥ ௩തሙቁ.  
 An increase in ambiguity of expected discount factor ܦ ∈ ॲ suggests a higher 
number of alternative recommendations to choose from. This may result in mak-
ing a decision, which will be ex post associated with a profit lower than maximal, 
that is with a loss of chance. This kind of risk is called an ambiguity risk. The 
ambiguity risk of ܦ is measured by energy measure ݀(ܦ). 
 An increase in the indistinctness of ܦ, on the other hand, suggests that the 
differences between recommended and not recommended decision alterna-
tives are harder to differentiate. This leads to an increase in the indistinctness 
risk, that is in the risk of choosing a not recommended option. The indistinct-
ness risk of an expected discount factor ܦ is measured by entropy measure ݁(ܦ). Imprecision risk consists of both ambiguity and indistinctness risk, com-
bined.  
 From (15) we have that the return rate is a function of the future value of an 
asset, which is uncertain, since we don’t know the future state of the world. Be-
cause of this, the investor is not sure whether they will gain or lose from the de-
cision made. With the increase in uncertainty, the risk of making a wrong deci-
sion is higher. Here, uncertainty risk of a return rate will be measured by its vari-
ance ߪଶ. 
 As compared to energy and entropy measures of a return rate form a portfolio 
with component assets given imprecisely by a triangular or trapezoidal fuzzy 
number (Siwek, 2015), the simplicity of those measures calculated for discount 
factors encourages their use in analyzing portfolios burdened with imprecision. 
The criterion of minimizing the discounting factor may then substitute the criteri-
on of return rate maximization, with same theoretical conclusions. 

 
4. MULTI-ASSET PORTFOLIO 

 
 By a financial portfolio we will understand an arbitrary, finite set of financial 
assets. Each of this assets is characterized by its assessed PV and anticipated 
return rate.  
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 Let us consider the case of a multi-asset portfolio ߨ, consisting of financial 
assets ܻ  (݅ = 1,2, … , ݊). The PV of assets ܻ   is estimated by fuzzy trapezoidal 
number ܶݎ൫ܥሙ() , ,ሙ∗()ܥ ,ሙ∗()ܥ ሙ௫()ܥ ൯ where parameters are given as follows: 
 
 ,ሙ() is the market priceܥ —
ሙ()ܥ — ∈ ൧0,  ,ሙ()൧ is the maximal lower bound of PVܥ
ሙ௫()ܥ — ,ሙ()ܥൣ ∋ +∞ൣ is the minimal upper bound of PV, 
ሙ∗()ܥ — ∈ ሙ()ܥൣ , ሙ()൧ is the minimal upper assessment of prices visibly lowerܥ

than the market price ܥሙ(), 
ሙ∗()ܥ — ∈ ,ሙ()ܥൣ ሙ௫()ܥ ൧ is the maximal lower assessment of prices visibly higher

than the market price ܥሙ() . 
 
 We assume that for each security ܻ we know the simple return rate ̃ݎ௧: Ω → ℝ 
appointed by (14) for the PV equal to the market price ܥሙ() . After Markowitz 
(1952) we assume that the ݊-dimensional variable (̃ݎ௧ଵ,̃ݎ௧ଶ, … , -௧)் has a cumulaݎ̃
tive normal distribution ܰ(࢘ത, ) where ࢘ത = ,ଵݎ̅) ,ଶݎ̅ … ,  )். We appoint an expectedݎ̅
discount factor of security ܻ: 
 

()ܦ  = ݎܶ ൬ܥሙ() ሙ()ܥݒ̅ , ,ሙ∗()ܥ ሙ∗()ܥ ሙ()ܥݒ̅ , ሙ௫()ܥ ሙ()൰, (22)ܥݒ̅

 
where ̅ݒ is an expected discount factor appointed using the expected return rate ̅ݎ. According to (12), the energy measure of ܦ() is given by 
 

 ݀൫ܦ()൯ = ሙܥపഥ2ݒ ൫ܥሙ∗() + ሙ௫()ܥ − ሙ()ܥ − ሙ∗()൯, (23)ܥ

 
and from (13), the entropy measure of a discounting factor can be calculated as 
 

 ݁൫ ܦ()൯ = ሙ∗()ܥ − ሙ()ܥ + ሙ௫()ܥ − ሙ∗()ܥ−ሙ∗()ܥ − ሙ()ܥ3 + ሙ௫()ܥ3 + ሙ∗(). (24)ܥ

 
We have that the market value ܥሙ (గ)of a portfolio ߨ is equal to 

 
ሙ(గ)ܥ  = ∑ ሙ()ୀଵܥ . (25)

 
Share  of an instrument ܻ in the portfolio ߨ is given by 

 

  = ሙ(గ). (26)ܥሙ()ܥ

 
We denote ഥ = ,ଵ) ,ଶ … ,  equals ݎ̅ )். Then expected portfolio return rate
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ݎ̅  = ത. (27)࢘ഥ்
 

As for the present value of the portfolio, according to (11) it is also a trapezoi-
dal fuzzy number  
 

 
ܸܲ(గ) = ݎܶ ൬ ሙ()ୀଵܥ ,  ሙ∗()ୀଵܥ ,  ሙ∗(ଵ)ୀଵܥ ,  ሙ௫()ୀଵܥ ൰ = 

ሙ(గ)ܥ൫ݎܶ=  , ,ሙ∗(గ)ܥ ,ሙ∗(గ)ܥ ሙ௫(గ)ܥ ൯. 
(28)

 
By (20), one can calculate the fuzzy expected discount factor of the port- 

folio ߨ: 
 

(గ)ܦ  = ݎܶ ൬ܥሙ(గ) ሙ(గ)ܥݒ̅ , ሙ∗(గ)ܥ ሙ(గ)ܥݒ̅ , ሙ∗(గ)ܥ ሙ(గ)ܥݒ̅ , ሙ௫(గ)ܥ ሙ(గ)൰, (29)ܥݒ̅

 
where ̅ݒ is a discounting factor calculated for expected return rate ̅ݎ. We have 
 

 
ݒ1̅ =  ୀଵݒ̅ , (30)

 
from which we obtain: 
 

ݒ̅  = ൬ ୀଵݒ̅ ൰ିଵ = ൬ ୀଵݒ̅ ൰ିଵ  ୀଵ = ൬ ୀଵݒ̅ ൰ିଵ  ݒ̅ ୀଵݒ̅ , (31)

 

 

ሙ(గ)ܥݒ̅ ሙ(గ)ܥ = ሙ(గ)ܥݒ̅  ሙ()ୀଵܥ = ݒ̅   ሙ()ୀଵܥሙ()ܥ = 

= ൬ ୀଵݒ̅ ൰ିଵ  ݒ̅ ൭̅ݒ ሙ()ܥሙ()ܥ ൱ୀଵ , (32)

 

 

ሙ(గ)ܥݒ̅ ሙ∗(గ)ܥ = ሙ(గ)ܥݒ̅  ሙ∗()ୀଵܥ = ݒ̅   ሙ()ୀଵܥሙ∗()ܥ = 

= ൬ ଵୀଵݒଵ̅ ൰ିଵ  ݒ̅ ൭̅ݒ ሙ()൱ܥሙ∗()ܥ ,ୀଵ  
(33)

 

 

ሙ(గ)ܥݒ̅ ሙ∗(గ)ܥ = ሙ(గ)ܥݒ̅  ሙ∗()ୀଵܥ = ݒ̅   ሙ()ୀଵܥሙ∗()ܥ = 

= ൬ ୀଵݒ̅ ൰ିଵ  ݒ̅ ቆ̅ݒଵ ሙ()ܥሙ∗()ܥ ቇୀଵ , (34)
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ሙ(గ)ܥݒ̅ ሙ௫(గ)ܥ = ሙ(గ)ܥݒ̅  ሙ௫()ୀଵܥ = ݒ̅   ሙ()ୀଵܥሙ௫()ܥ = 

= ൬ ୀଵݒ̅ ൰ିଵ  ݒ̅ ൭̅ݒ ሙ()ܥሙ௫()ܥ ൱ .ୀଵ  
(35)

 
 From the formulas given above, we can rewrite the fuzzy discount factor as 
 

(గ)ܦ  = ൬ ୀଵݒ̅ ൰ିଵ ⊙ ൬⊕ୀଵ ݒ̅ ⊙ ൰. (36)()ܦ

 
 From (12) and (36), we obtain that the energy measure of an expected dis-
counting factor ܦ ∈ ॲ is a linear combination of energy measures calculated for 
each of component assets 
 

 ݀൫ܦ(గ)൯ = ൬ ୀଵݒ̅ ൰ିଵ  ݒ̅ ݀൫ܦ()൯ୀଵ . (37)

 
 The relation above suggests that the energy of a fuzzy expected discount 
factor of a portfolio ߨ is, in fact, a linear combination of weighted energies of 
those factors calculated for its components. The weights calculated for the 
assets ܻ  increase with their shares in the portfolio and, respectively, de-
crease with the value of their discount factor ̅ݒ. This fact leads to a conclu-
sion, that when trying to minimize the ambiguity risk of a portfolio, one should 
focus on minimizing the ambiguity of component assets, which are character-
ized by the highest expected return rates. On the other hand, the shares of an 
asset in the whole portfolio are, according to the theory, appointed post fac-
tum, by gathering available information on said assets. Condition (37) shows 
that, in the researched case, the portfolio diversification only ”averages” the 
risk of ambiguity. 
 According to (13), the entropy measure of expected discount factor is equal 
 

 ݁൫ܦ(గ)൯ = ሙ∗(గ)ܥ − ሙ(గ)ܥ + ሙ௫(గ)ܥ − ሙ∗(గ)ܥ−ሙ∗(గ)ܥ − ሙ(గ)ܥ3 + ሙ௫(గ)ܥ3 + ሙ∗(గ). (38)ܥ

 
 The variance of a portfolio return rate is calculated by  
 

ଶߪ  = ഥ. (39)ഥ்
 

By constructing a portfolio which minimizes the variance Markowitz proved 
that portfolio diversification can ”minimize” the uncertainty risk. 
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5. CASE STUDY 
 
 The portfolio ߨ  consists of financial assets ଵܻ  and ଶܻ . Anticipated vector (̃ݎ௧ଵ,  ௧ଶ)் of their simple return rates has two-dimensional normal distributionݎ̃
 ܰ ቀ(0.25,0.5)், ቂ  0.5 −0.1−0.1  0.4 ቃቁ. 
 
 For the asset ଵܻ with market price ܥሙ(ଵ) = 24, its PV is estimated by a trapezoidal 
fuzzy number ܶ18)ݎ, 23, 25, 37). Then according to (18), the fuzzy expected return 
rate from Yଵ is a fuzzy number ܴଵ ∈  ॲ given by membership function ߩଵ ∈ ሾ0,1ሿℝ 
 

(ݎ)ଵߩ  =
۔ۖەۖ
ۓ 61 + ݎ − 3.6,     for     0.67  ݎ > 0.30,1,                    for     0.30  ݎ > 0.20,−2,51 + ݎ + 3.08   for      0.20 > ݎ  −0.19,0                     for       ݎ ∉ ሾ−0.19, 0.67ሿ.

 

 
 For the asset ଶܻ with market price ܥሙ(ଶ) = 69, its PV is estimated  by fuzzy trape-
zoidal number ܶ66)ݎ, 67, 70, 75) . Then according to (18),  the fuzzy expected 
return rate of ଶܻ is a fuzzy number ܴଶ ∈ ॲ with membership function ߩଶ ∈ ሾ0,1ሿℝ  
 

(ݎ)ଶߩ  =
۔ۖەۖ
103.51ۓ + ݎ − 66,    for     0.57  ݎ > 0.54,1,                    for     0.54  ݎ > 0.48,−20.71 + ݎ + 15    for      0.48 > ݎ  0.38,0                     for       ݎ ∉ ሾ0.38, 0.57ሿ.

 

 
 Membership functions for return rates of both assets are presented in figure 1. 
It is easy to see that the expected return rate is not a trapezoidal fuzzy number.  

Figure 1. Membership functions for expected return rates ܴଵ and ܴଶ 

 
Source: own study. 
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 Using the expected return rate ܴଵ  we may now appoint by means of (21) 
a fuzzy expected discount factor ܦ(ଵ) ∈ ॲ. We have 
 

(ଵ)ܦ  = ݎܶ ൬18 0.824 , 23 0.824 , 25 0.824 , 37 0.824൰ = ,0.6)ݎܶ 0.77, 0.83, 1.23). 
 
 According to (29), its energy measure equals 
 

 ݀൫ܦ(ଵ)൯ = 0,82 ∙ 24 (37 − 18 + 25 − 23) = 0.35. 
 
and from (30), the entropy measure has the value of 
 

 ݁൫ܦ(ଵ)൯ = 23 − 18 + 37 − 25−23 − 3 ∙ 18 + 3 ∙ 37 + 25 = 0.29. 
 
 The expected discount factor ܦ(ଶ) ∈ ॲ of the second asset calculated using ܴଶ 
equals 
(ଶ)ܦ  = ݎܶ ൬66 0,6769 , 67 0,6769 , 70 0,6769 , 75 0,6769 ൰ =  .(0.64,0.6,0.68,0.73)ݎܶ
 
 Also, its energy measure equals 
 

 ݀൫ܦ(ଶ)൯ = 0,672 ∙ 69 (75 − 66 + 70 − 67) = 0.06. 
 
and entropy measure has the value of 
 

 ݁൫ܦ(ଶ)൯ = 67 − 66 + 75 − 70−67 − 3 ∙ 66 + 3 ∙ 75 + 70 = 0.2. 
 
 The market price of portfolio ߨ is equal to 
 

ሙ(గ)ܥ  = 24 + 69 = 93. 
 
 Corresponding to (26), shares ଵ  and ଶ  of ଵܻ  and ଶܻ  in the portfolio ߨ  are 
equal 
 

ଵ  = ଶ   ,2493 = 6993. 
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 We can appoint the fuzzy expected discount factor ܦ(గ) ∈ ॲ of the portfolio ߨ. 
By (36), it is a fuzzy number of the form 
 

(గ)ܦ = ۈۉ
൮ቌۇ 24930.8 + 69930.67ቍିଵ ∙ 24930.8൲ ⊙ (ଵ)ܦ

ۋی
ۊ ⊕ 

⊕ ۈۉ
൮ቌۇ 24930.8 + 69930.67ቍିଵ ∙ 69930.67൲ ⊙ (ଶ)ܦ

ۋی
ۊ = 

= ൫0.2256 ⊙ ൯(ଵ)ܦ ⊕ ൫0.7744 ⊙ ൯(ଶ)ܦ = ,0.63)ݎܶ 0.68, 0.71, 0.84). 
 
 Its energy measure calculated by (37) equals 
 

 ݀൫ܦ(గ)൯ = 0.2256 ∙ 0.35 + 0.7744 ∙ 0.06 = 0.13. 
 
 Entropy measure can be calculated by (38) 
 ݁൫ܦ(గ)൯ = ݁൫ܶ0.63)ݎ, 0.68, 0.71, 0.84)൯ =  0.68 − 0.63 + 0.84 − 0.71− 0.68 − 3 ∙ 0.63 + 3 ∙ 0.84 + 0.71 = 0,27. 
 
 Let us note that we have 
 ൬ଵ̅ݒଵ + ଶ൰ିଵݒଶ̅ ቆଵ̅ݒଵ ݁൫ܦ(ଵ)൯ + ଶݒଶ̅ ݁൫ܦ(ଶ)൯ቇ = = 0.2256 ∙ 0.29 + 0.7744 ∙ 0.2 = 0.2203 ് 0,27 = ݁൫ܦ(గ)൯. 
 
 It implies that the portfolio entropy measure ݁൫ܦ(గ)൯ cannot be calculated simi-
larly to the portfolio energy measure ݁൫ܦ(గ)൯ by the linear combination (37). 
 We obtain following relations between the energy measure and entropy 
measure appointed for fuzzy expected discount factors of portfolio and its com-
ponents: 
 

(ଵܦ)݀  > ݀൫ܦ(గ)൯ >  ,(ଶܦ)݀
 

(ଵܦ)݁  > ݁൫ܦ(గ)൯ >  .(ଶܦ)݁
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 These inequalities show that the portfolio diversification can average the im-
precision risk. Moreover, using (39) we calculate the variance of a return rate 
from portfolio: 

 
ଶߪ  = 0.2175. 

 
 By increasing the number of assets in the portfolio, we can lower the vari-
ance (which approaches its limit with number of assets going to infinity). This 
means that creating a multi asset portfolio ߨ results in minimizing the uncer-
tainty risk. 
 Let us consider now any portfolio ߨ consisting of financial assets ଵܻ and ଶܻ. 
The contribution of the instrument ܻ in the portfolio ߨ is equal to . Then, ac-
cording to (36), the expected discount factor ܦ(గ) ∈ ॲ of the portfolio ߨ can be 
calculated in the following way 

(గ)ܦ  = ቀ ଵ0.8 + ଶ0.67ቁିଵ ⊙ 

⊙ ൭ቆ ଵ0.8 ⊙ ,0.6)ݎܶ 0.77, 0.83, 1.23)ቇ ⊕ ቆ ଶ0.67 ⊙ ;0.64)ݎܶ 0.65; 0.68; 0.73)ቇ൱ = 

= ଵ0.67 ⊙ ,0.6)ݎܶ 0.77, 0.83, 1.23) ⊕ ଶ0.8 ⊙ ;0.64)ݎܶ 0.65; 0.68; ଵ0.667(0.73 + ଶ0.8 = 

= ଵ ⊙ ,0.402)ݎܶ 0.5159, 0.5561,0.8241) ⊕ ଶ ⊙ ,0.512,0.52)ݎܶ ଵ0.67( 0.544,0.584 + ଶ0.8 . 
 
 We see that the expected fuzzy discount factor of portfolio can be expressed 
as a combination of securities contributions and their expected fuzzy discount 
factors. In an analogous way the ambiguity risk may be evaluated because of 
the energy measure for this factor by (37) is given as follows: 

 ݀൫ܦ(గ)൯ = ቀ ଵ0.8 + ଶ0.67ቁିଵ ቀ ଵ0.8 0.35 + ଶ0.67 0.06ቁ = ଵ0.350.67 + ଵଶ0.060.670.8 + ଶ0.8 = 

= ଵ0.2345 + ଵଶ0.670.048 + ଶ0.8 . 
 
 Above we have shown that entropy measure ݁൫ܦ(గ)൯ cannot be expressed in 
analogous way. The last two equations can be applied to the mathematical pro-
graming task dedicated to portfolio optimization. 
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6. SUMMARY 
 
 The main purpose of this article was to analyse the possibility of managing the 
risk burdening a two-asset portfolio, built with use of an imprecise information 
stemming from present value of component assets. The imprecise present val-
ues were modelled with by trapezoidal fuzzy numbers. For this assumptions we 
have reached the following conclusions: 
— The portfolio diversification can lower uncertainty risk, 
— The portfolio diversification averages ambiguity risk, 
— The portfolio diversification can to average indistinctness risk. 
 The results obtained suggest, on one hand, that the portfolio diversification 
does not help in lowering the imprecision risk, but on the other hand, it also does 
not increase it. Thus, research suggests that there exist portfolios, which impre-
cision risk will not be minimized with portfolio diversification, and thus it is vital to 
create a new risk minimization problem, including all of the risk types. 
 The results obtained above encourage for their broader analysis. Further re-
search can focus on generalizing the representation of the present value to an 
arbitrary fuzzy number. Helpful here can be fundamental results obtained in 
Goetschel, Voxman (1986) and Stefaninia et al. (2006). 
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PORTFEL WIELOSKŁADNIKOWY 
Z TRAPEZOIDALNYMI ROZMYTYMI WARTOŚCIAMI BIEŻĄCYMI 

 
Streszczenie 

 
 Głównym celem niniejszego artykułu jest przedstawienie charakterystycznych 
cech portfela wieloskładnikowego w przypadku, kiedy bieżące wartości składni-
ków portfela są trapezoidalnymi liczbami rozmytymi. W ramach analizy portfelo-
wej jest wyznaczany rozmyty oczekiwany czynnik dyskonta i oceny ryzyka 
nieprecyzyjności. Dzięki temu pojawia się możliwość opisania wpływu dywersy-
fikacji portfela na ryzyko nieprecyzyjności. Przedstawione teoretyczne rozważa-
nia i uzyskane wnioski są poparte przykładem liczbowym. 
 Słowa kluczowe: portfel wieloskładnikowy, wartość bieżąca, trapezoidalna 
liczba rozmyta, czynnik dyskontowy 

 
MULTI-ASSET PORTFOLIO WITH TRAPEZOIDAL FUZZY 

PRESENT VALUES 
 

Abstract 
 
 The main purpose of the following paper is to present characteristics of 
a multi-asset portfolio in case of present values of composing financial instru-
ments being modelled by a trapezoidal fuzzy number. Throughout the analysis 
a fuzzy expected discount factor and imprecision risk assessments are calculat-
ed. Thanks to that, there arises a possibility to describe the influence of portfolio 
diversification on imprecision risk. Presented theoretical inference and obtained 
conclusions are supported by numerical example. 
 Keywords: multi-asset portfolio, present value, trapezoidal fuzzy number, 
discount factor 
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the quality of forecasting methods  

of ultra-high-frequency data of exchange rates2 

1. INTRODUCTION

 In this article, a review of forecasting method was conducted using historical 
tick data from the foreign exchange market. Both ask and bid prices from one 
trading day – from 5 pm 05-03-2012 to 5 pm 06-03-2012 for every exchange 
rate AUD/CAD, AUD/USD, GBP/JPY, GBP/PLN, GBP/USD, USD/CHF, 
USD/JPY were analyzed separately as independent data. Forecasting methods 
used in the article range from simple statistical methods like moving average, 
linear regression to more advanced like Kalman filter, ARMA, ARIMA models. 
Finally, machine learning methods like linear discriminant analysis and logistic 
regression were tested. 
 In the first part of the research, point forecasts were calculated using statisti-
cal models. For them, AMAPE errors were calculated to compare results be-
tween methods. In the second part of the research, logistic regression and linear 
discriminant analysis models were trained on historical data to predict a direction 
of bid/ask price change (up, down, the same). Additionally, the point forecasts 
from the previous part of the research were transformed into predictions of  
a direction of bid/ask price change. For a comparison of results a metric called 
forecasting accuracy was used (a percent of accurate forecasts).  
 The models were optimized by selecting the best hyperparameters based on 
their performance on historical data. The time series were divided into subseries 
of 10000 values. Every model was trained and optimized on the previous subse-
ries and tested on out-of-sample data (on next 10000 values). These two steps 
were repeated for all subseries.  

1 Poznań University of Economics, Faculty of Applied Mathematics, 53 Towarowa St., 61–896 
Poznań, Poland, email: robertszostakowski@gmail.com. 
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wisdom during this research. Lastly, I would like to thank my second advisor, Dr Michał Galas for 
providing tick data from the repositories of University College London and for his guidance.  
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 Moreover, for every time series, a rolling window of past 150 values was used 
to calculate values of the Hurst exponent. Every exponent value was assigned to 
the last 150th bid/ask quote from the rolling window. These results were com-
pared with forecasting accuracy metrics from both parts of the research. At the 
end based on the forecasting results and time series characteristics, a few dis-
covered dependencies were presented. 
 The main hypothesis of this research is the fact that the forecasting error de-
creases and the percentage forecasting accuracy increases when the value of 
the Hurst exponent increases. It was proven that analyzing the time series char-
acteristics based on the chaos theory like a value of the Hurst exponent can be 
helpful in achieving better forecasting results. Finally, the average forecasting 
accuracy was higher for machine learning methods than for statistical methods, 
regardless of values of the Hurst exponent.  
 The idea behind this research was to develop a methodology which can be 
applied to the art of forecasting to increase the performance of a variety of mod-
els. The article main contribution to the science is a set of rules how to use the 
Hurst exponent for developing more accurate forecasting models.  
 The paper is divided into following parts. The first section is an introduction to 
the article. It describes the idea behind the research. Moreover, this section 
explains the main hypothesis and article contribution to the science. The next 
section describes the current state of the science in the field of forecasting and 
the Hurst exponent analysis. The third section characterizes the data used in 
the research. The next section is a detailed introduction to the Hurst exponent 
analysis with references to its application in other papers. The fifth section de-
scribes forecasting methods which were used in the research. The sixth section 
shows how the research was conducted. It describes an optimization algorithm 
and explains how the forecasting models were adjusted for obtaining the best 
results. The next section puts attention to the problems which were encoun-
tered by the researcher while forecasting high-frequency data. The eighth sec-
tion includes a description of benchmarks which were used to compare fore-
casting models. The ninth section shows the empirical results of forecasting 
using statistical and machine learning models applied to tick currency data. The 
article ends with a section which summarizes the research and proposes further 
extensions.  

 
2. RELATED LITERATURE 

 
 Forecasts based on large data sets gained a significant importance in every 
branch of economics. The necessity of forecasting led to a discovery of a range 
of methods starting from simple, autoregressive models to complicated nonlinear 
specifications. In most cases, a level of model complexity does not correlate with 
the expected results which is shown in the work of Green, Armstrong (2015). 
Moreover, it is impossible to discover a true model which generates a given time 
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series data according to the effective market hypothesis developed by Fama 
(1970) or the fractal market hypothesis discovered by Peters (1994) which says 
that price changes in financial markets are random or come from the determinis-
tic chaos process.  
 An attempt to measure long memory effects was done by Hurst (1951) in his 
work in the area of hydrology. Analyzing the Hurst exponent on financial data 
might lead to more accurate, competitive out-of-sample forecasts and it is de-
scribed in the work of Mitra (2012), Castillo, Melin (1996). Their research was 
conducted on daily stock market returns. According to their conclusions, values 
of the Hurst exponent which differ from 0.5 (random series) can be used as  
a predictor for investment strategies. Based on this fact, it was assumed that we 
can increase our investment results by analyzing values of the Hurst exponent 
over time. Furthermore, Qian, Rasshed (2004) proved that investigating values 
of the Hurst exponent calculated from Dow-Jones daily returns can increase the 
forecasting performance of neural networks. Unfortunately, he proved that ana-
lyzing only values of the Hurst exponent bigger than 0.5 leads to more accurate 
forecasts. In this research, a similar approach was applied to the full order book 
data of exchange rates. This article shows that the Hurst exponent results calcu-
lated from tick data have totally different density plots than in the research done 
by Qian, Rasshed (2004).  
 In the art of forecasting, it is almost impossible to repeat the forecasting accu-
racy in out-of-sample data based on historical results. Usually, models are se-
lected by their performance on historical data what leads to the assumption that 
the best historical models will perform with at least the same accuracy in the 
future. A research presented by Aiolfi, Timmermann (2006) shows that a signifi-
cant persistence in the forecasting performance can be found. The authors used 
data sets of stock market returns, interest rates and spread from main G7 econ-
omies during the 1959 and 1999 year. 
 In this article, their research is extended by analyzing time series characteris-
tics based on the fractal theory developed by Peters (1994) to measure the ac-
curacy of forecasting methods on high-frequency data of exchange rates. The 
research of Andersen, Bollerslev (1997) showed the importance of long-memory 
dependence in financial market volatility. This dependence in market volatility is 
characterized by slowly mean-reverting fractionally integrated process. Their 
article proved that forecasts of low-frequency volatility are more precise when 
based on high-frequency data. It established a link between financial markets 
microstructure and lower-frequency data relevance. Moreover, Cheung (1993) 
showed an evidence of long memory in exchange rates data. His research indi-
cates that the empirical evidence of unit roots in exchange rates data is not ro-
bust to long memory alternatives. The author mentioned that the dependence is 
also hard to detect using impulse-response function analysis. The model used in 
the research – ARFIMA (integrated autoregressive moving average) did not 
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outperform a random walk in out-of-sample forecasts. Huang, Yang (1999) came 
to a similar conclusion using high-frequency data – one-minute time intervals in 
a given trading day for NYSE and NASDAQ. The researchers used the Modified 
Rescaled Range Analysis to discover a long-term memory in analyzed series. 
They showed sub periods during trading sessions when the random walk hy-
pothesis was not supported. Their research conclusion is similar to Peters 
(1994) – local randomness and global determinism can actually coexist.  
 In the review of the forecasting methods, a wide range of models is used, 
starting from a simple moving average, ending with machine learning methods 
like linear discriminant analysis. Selecting two machine learning methods for the 
article was driven by analyzing the research results obtained in this area, par-
ticularly in the research of Ahmed et al. (2010), which shows how accurate pre-
dictions can be obtained using machine learning methods. Two models which 
were not used in the above-mentioned article: linear discriminant analysis and 
logistic regression were selected for the following research.  
 

3. DATA AND PROGRAMMING FRAMEWORKS 
 
 The research was conducted on the ultra-high-frequency data set. The full 
order book data from one trading day – from 5 pm 05-03-2012 to 5 pm  
06-03-2012 for seven major exchange rates was analyzed (AUD/CAD, 
AUD/USD, GBP/JPY, GBP/PLN, GBP/USD, USD/CHF, USD/JPY). Each ex-
change rate order book has a bid and ask series and they were both used in the 
forecasting research. As an example, one trading day from AUD/CAD exchange 
rate (bid and ask prices) is shown in figure 1.  
 

Figure 1. Bid and ask time series from one trading day, AUD/CAD 
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 The forecasts of the next value (in this case it was tick – a change in the price 
of a security from trade to trade) were conducted on both ask and bid prices 
separately. In summary, fourteen different time series were taken into the analy-
sis, when we consider ask and bid series separately. Moreover, given time se-
ries were used to calculate factors necessary for forecasting models like the 
Hurst exponent, logarithmic returns, which are described in a more detailed ori-
ented manner in the sixth section. The volume of analyzed data can be seen in 
table 1. 
 
 

Table 1. NUMBER OF TICKS FOR BID AND ASK PRICES IN ANALYZED EXCHANGE RATES 

Number  
of ticks AUD/CAD AUD/USD GBP/JPY GBP/PLN GBP/USD USD/CHF USD/JPY 

ask 143 395  533 049  359 564  93 417  307 348  441 409  483 167 
bid 143 395  533 049  359 564  93 417  307 348  441 409  483 167 

 
 
 In analyzed time series several zeros were removed and replaced by the pre-
vious value. This algorithm was chosen as the safest cleansing approach since 
repeating data in exchange rates time series are very common.  
 The research was conducted in the framework developed in python 3.5.2. 
using libraries: scikit-learn 0.16.1, numpy 1.8.2, matplotlib 1.4.2, pandas 0.16.2. 

 
4. HURST EXPONENT 

 
 In the article, the Hurst exponent analysis is used to discover subparts of the 
time series, which have different characteristics like persistency, randomness or 
anti-persistency. A value of the Hurst exponent is calculated by rescaled range 
analysis (R/S analysis) which is a statistical measure of the variability. It is calcu-
lated by dividing the range of the values exhibited in subseries by the standard 
deviation of the values over the same subseries. Namely, a series of length ܰ is 
divided into a number of shorter time series ݀ with a length ݊, where ݀ ∙ ݊ = ܶ. 
Then for every sub-period with a length ݊, a rescaled range is calculated: 

 
1. Calculation of the mean value  

 
 ݉ = 1݊  ܺ

ୀଵ , (1)

 
2. Calculation of the adjusted series ܻ  

 
 ௧ܻ = ܺ௧ − ݉ , ݐ      = 1, 2, … , ݊, (2)
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3. Calculation of the cumulative deviation  
 
 ܼ௧ =  ܻ,      t = 1, 2, … , n,௧

ୀଵ  (3)

 
4. Calculation of the range series – ܴ  
 
 ܴ(݊) = ,ଵܼ)ݔܽ݉ ܼଶ, … , ܼ) − ݉݅݊(ܼଵ, ܼଶ, … , ܼ), (4)
 
5. Calculation of the standard deviation series – ܵ 
 
 ܵ(݊) = ඩ1݊ ( ܺ − ݉)ଶ,

ୀଵ  (5)

 
where m is the mean value calculated in point 1.  

 
6. Calculation of the rescaled range series ோௌ 

 
 ൬ܴܵ൰ = ܴ(݊)ܵ(݊), (6)

 
7. Hurst discovered that ቀோௌቁ scales by power-law when the time increases 

which leads to the equation  
 
߃  ൬ܴܵ൰ = ܿ ݊ு, (7)

 
where ܿ is a constant, independent of ݊ and ܪ is called the Hurst exponent.  

 
 The procedure described above is repeated for different values of  ݊ = ܰ, ேଶ , ேସ , ே଼ … , where the minimum length of eight is usually chosen for the 
length of the smallest subseries. Finally, to estimate a value of the Hurst expo-
nent, a simple, ordinary least squares regression is calculated on natural loga-
rithms obtained from the equation from the 7th point.  
 
ܧ݈݊  ൬RS൰ = ln ܿ + ܪ ln ݊, (8)

 
where ܪ is the Hurst exponent.  
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 The Hurst exponent divides time series into three groups: 
― anti-persistent when ܪ < 0.5  – price in time series tends to come back to the 

long-term mean (weak trends), 
― persistent when 0.5 < ܪ < 1  – this is the opposite of anti-persistent, which 

means there is a strong trend and long memory effects, 
― random when ܪ = 0.5. 
 In the research, the values of the Hurst exponent were calculated for all four-
teen bid/ask time series with maximal ݊ which is equal to 150 observations, 
which is very close to 2. That means the Hurst analysis was done for subseries 
with lengths 2, 2, 2ହ, … , 2ଷ. After the Hurst exponent estimation, every value 
was classified into ten segments from 0 to 1 with a step 0.1. The candle density 
plot with the results of the classification can be seen in figure 2.  

 
Figure 2. Number of ticks classified into the Hurst exponent segments for every exchange rate 

 
 
 Most of the values seem to be categorized to the anti-persistent group (from 0 
to 0.5) which indicates that the time series show a mean-reverting tendency.  

 
5. FORECASTING METHODS USED IN THE RESEARCH 

 
 Eight forecasting methods were analyzed in this article. Starting from simple 
statistical methods like moving average or exponential smoothing which were 
chosen mostly as benchmarks, going to more advanced, statistical methods like 
linear regression or Kalman filter. The last two methods were chosen with  
a hope that more advanced methods should provide better results than simple 
models.  
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 Moreover, two time series models were chosen – ARMA and ARIMA as  
a representative of the econometric modeling approach. At the end, the ap-
proach to forecasting was changed and two methods based on machine learning 
were selected: logistic regression and linear quadratic regression. 
 A forecasted point result obtained for models from paragraphs 5.1 to 5.6 for 
selected time spans was always taken as a forecast for the next value. For 
models 5.7 and 5.8 a possible direction of the price change was forecasted. 
Possible three states were used: 
― price increased, 
― price decreased,  
― price stayed the same. 
 In the second part of the research, the point forecasts for the models de-
scribed in 5.1 to 5.6 were transformed to the forecasts of possible direction of 
bid/ask price change to make a comparison between statistical and machine 
learning models possible.  

 
5.1. Simple moving average  
 
 ”Moving average” referring to a type of stochastic process is an abbreviation 
of Wold’s (1939) process of moving average. It is an un-weighted mean of the 
previous ݊ data which was used as a forecast for the next value. For calculating 
a simple moving average (SMA or running average) of ݊ observations 
 :the following formula is used ((ି)ି࢚࢞ ,…,ି࢚࢞ ,࢚࢞)

 
 SMA = ௧ݔ + .+௧ିଵݔ . . ݊௧ି(ିଵ)ݔ+ = 1݊  ௧ିିଵݔ

ୀ . (9)

 
5.2. Exponential smoothing 
 
 Historically, the method was independently developed by Robert Goodell 
Brown and Charles Holt and it was described in ”Smoothing, Forecasting and 
Prediction of Discrete Time Series” written by Brown (2004). The output of the 
exponential smoothing algorithm is defined as ݏ௧, which can be regarded as the 
best estimate of what the next value of ݔ will be. Given a sequence of observa-
tions which starts at the time ݐ = 0 and a smoothing factor ߙ, such as 0 < ߙ < 1, 
the exponential smoothing model is given by the formulas: 

 
ݏ  = , (10)ݔ

 
௧ݏ  = ௧ݔ ߙ + (1 − ௧ିଵ. (11)ݏ (ߙ
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5.3. Linear regression 

 
 It is an approach for modeling the relationship between a scalar dependent 
variable ݕ and explanatory variables (or independent variables) denoted ݔ. In 
linear regression, the relationships are modeled using linear predictor functions 
whose unknown parameters are estimated from the data.  
 In practice, there is an approximate linear relationship between the variables 
rather than exactly linear. This approximation can be represented by adding 
a non-observable variable ߝ, fancied as a collection of small errors. The variable 
is often called ”noise” and represents all other factors which influence the de-
pendent variable ݕ௧. Given n observations (ݔ௧, ݔ௧ିଵ,…, ݔ௧ି(ିଵ)) called ”regres-
sors”, ”exogenous variables” or ”independent variables” the following hypothesis 
describes the estimation of the future value ݕ௧ which is called a ”regressand” or 
”endogenous variable”.  
 
௧ݕ  = .+௧ିଵݔ௧ିଵ ߚ . . ௧ି(ିଵ)ݔ௧ି(ିଵ) ߚ+ + (12) ,ߝ
 
where ߚ are regression coefficients and ߝ is the error term or noise. This value 
captures all factors which influence the dependent value ݕ௧ other than the re-
gressors ݔ௧.  
 
 In order to estimate a linear regression model, few assumptions about the 
error term and data must be met (Greene, 2000):  
― there is a random sampling of observations, 
― the conditional mean should be zero – ߝ)ܧ ∣ (ݔ = 0, 
― there is no multicollinearity, 
― the error terms should all have the same, finite variance (homoscedastici-

ty), 
― there is no autocorrelation (the error terms of different observation should not 

be correlated),  
― the error term should be normally distributed. 
 
 In the research, the linear regression model was estimated few millions of 
times. Probably, for some estimations, the above-mentioned assumptions 
were met, but for some were not. The goal was to compare this linear method 
with other, more advanced methods (as a benchmark). For the same reasons, 
the linear regression was used in the articles of Altay (2005) and Ahangar et 
al. (2010). 
 Moreover, the linear regression was chosen for forecasting because of rapid 
price changes which can be observed in the analyzed time series. Moreover, 
this model is widely used in the scientific research, for example by Lin, Tsai 
(2015). For calculating linear regression forecasts the model from the scikit-learn 
library was used. It uses Ordinary Least Squares method to estimate the linear 
regression parameters.  
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5.4. Kalman Filter 
 
 It is the advanced statistical algorithm used widely in physics also known as 
linear-quadratic estimation (LQE). The model uses a series of measurements 
observed over time, containing statistical noise and other inaccuracies. It pro-
duces estimates of unknown variables that tend to be more precise than those 
based on a single measurement alone by using Bayesian Inference and by 
estimating a joint probability distribution over the variables for each time 
frame.  
 The Kalman filter can be written as a single equation but usually, it is de-
scribed as two distinct equations which symbolize two phases: ”predict” and 
”update”. The predict phase uses the state estimate from the previous time step 
to produce an estimate of the state at the current time step, which is also called 
”a priori” state. The update phase combines the current ”a priori” prediction with 
the current observation information in order to refine the state estimate. De-
scribed phases are formulated by following equations: 
 
Predict: 
 
Predicted (a priori) state estimate  
 
ො௧|௧ିଵݔ  = ො௧ିଵ|௧ିଵݔ ௧ିଵ ܨ + ௧, (13)ݑ௧ܤ
 
Predicted (a priori) estimate covariance  
 
 ௧ܲ|௧ିଵ = ௧்ܨ௧ ௧ܲିଵ|௧ିଵ ܨ + ܳ௧, (14)
 
Update: 
 
Updated (a posteriori) state estimate  
 
ො௧|௧ݔ  = ௧ݕ௧൫ܭ ො௧|௧ିଵݔ − ො௧|௧ିଵ൯, (15)ݔ௧ܪ
 
Optimal Kalman gain  
 
௧ܭ  = ௧ܲ|௧ିଵ ܪ௧் ൫ܪ௧ ௧ܲ|௧ିଵܪ௧் + ܴ௧൯, (16)
 
Updated (a posteriori) estimate covariance  
 
 ௧ܲ|௧ = ௧ܲ|௧ିଵ (ܫ − ௧), (17)ܪ௧ܭ
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where:  
-state transition matrix (i.e., transition be – ܨ  ,ො – estimated stateݔ 

tween states), ݑ – control variables,  ܤ – control matrix (i.e., mapping control to
state variables), ܲ – state variance matrix,   ܳ – process variance matrix (i.e., error due to
process), ݕ – measurement variables,  ܪ – measurement matrix (i.e., mapping meas-
urements), ܭ – Kalman gain,  ܴ – measurement variance matrix. 

 
 The complexity of the filter was explained in the paper ”Understanding the 
Kalman Filter” by Meinhold, Singpurwalla (1983).  
 
5.5. ARMA – autoregressive–moving-average model 
 
 The model consists of autoregressive part AR() where  means the order, 
and of moving-average model MA(ݍ) where ݍ also means the order. The auto-
regressive part AR() uses a linear combination of its own lagged values. It is 
described using the following equation:  
 
௧ݔ  = ܿ +  ߮ݔ௧ି

ୀଵ + ௧, (18)ߝ

 
where: ߮ are parameters of the linear model on lagged values, ߝ௧ are errors of 
the model which are assumed to be independent identically distributed random 
variables (i.i.d.) sampled from a normal distribution with zero mean: ݁௧ ~ ܰ(0,  (ଶߪ
where ߪଶ is the variance. 
 
 The moving average part MA(ݍ) models the error as a linear combination of 
error terms occurring contemporaneously in the past. It is described using the 
following equation: 
 
௧ݔ  = ߤ +  ௧ିߝߠ

ୀଵ + ௧, (19)ߝ

 
where: ߠ are parameters of the linear model on past error terms, ߤ is the expec-
tation of ݔ௧. 
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 Finally, the ARMA model consists two models described above AR() and MA(ݍ) and has the following formula:  
 
௧ݔ  = ܿ + ௧ߝ +  ߮ݔ௧ି

ୀଵ +  ௧ିߝߠ
ୀଵ , (20)

 
where: ߮ are parameters of the autoregressive part of the model, ߠ are param-
eters of the moving average. 
 
 A more detailed description of the model can be found in the work of Tsay 
(2002).  
 
5.6. ARIMA model – autoregressive integrated moving average 
 
 This model is a generalization of the autoregressive moving average (ARMA) 
model. Non-seasonal ARIMA models are generally denoted ARMA(, ݀,  where (ݍ
parameters , ݀, and ݍ are non-negative integers and  is the order of the auto 
regression. This model is usually applied to the data which show evidence of 
non-stationarity. In such case, a differencing step can be applied to reduce the 
non-stationarity in the time series. The ”I” part of the model stands for ”Integrat-
ed” which means that the data were reduced by replacing non-stationary series 
by the difference between their values and the previous values. They can be 
estimated using the Box-Jenkins approach. A more detailed description of the 
model can be found in the research of Tsay (2002). 
 
5.7. Logistic regression 
 
 This model measures the relationship between the categorical dependent 
variable and independent variables by estimating probabilities using a logistic 
function. It is used to estimate the probability of a binary response based on one 
or more predictors (or independent) variables (features). It is not a classification 
method, but in terms of economics, it is called qualitative response/discrete 
choice model. It can be seen as a special case of the generalized linear model 
which is analogous to linear regression, but it is based on different assumptions. 
The conditional distribution is a Bernoulli distribution rather than a Gaussian 
distribution because the dependent variable is binary. This method was devel-
oped by statistician David Cox in 1958. A detailed explanation of the logistic 
regression was described in the article by Yu et al. (2010). 
 
5.8. Linear discriminant analysis 
 
 The model is a generalization of Fisher’s linear discriminant, which is used to 
find a linear combination of features that characterizes two or more classes of 
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objects. The resulting combination may be used as a linear classifier or for di-
mensionality reduction before conducting a classification. The method is related 
to ANOVA and to regression analysis, but it has continuous independent varia-
bles and a categorical dependent variable when ANOVA has categorical inde-
pendent variables and a continuous dependent variable. It is widely used for face 
recognition problems, bankruptcy prediction and in marketing. In the research, 
the model LDA from the python machine learning library scikit-learn was used. 
It was implemented based on the description in the work of Hastie et al. (2008). 
 

6. RECALCULATION OF MODELS AND OPTIMIZATION 
 
6.1. Models calibration 

 
 In the article, eight forecasting methods were optimized by selecting the best 
hyperparameters based on their performance on historical data. Every time se-
ries out of fourteen was divided into subseries of 10000 values. After selecting 
the best model for particular subseries, the hyperparameters were used to con-
duct forecasts on the next subseries (10000 values, out-of-sample data). These 
two steps were repeated for the whole time series. The same procedure was 
applied to every time series. A model optimization for each subseries was con-
ducted based on criteria’s described below: 
― the lowest AMAPE error – for models like moving average, exponential 

smoothing, linear regression, Kalman filter models, described in paragraphs 
5.1 to 5.6, 

― the highest accuracy of forecasting a direction of bid/ask price change, which 
is a percentage of accurate forecasts of possible up, down movements or 
without changes divided by the number of all forecasts. These criteria were 
used for logistic regression and linear discriminant analysis models described 
in paragraphs 5.7 and 5.8. 

 This approach for model calibration was chosen based on the research done 
by Katz, McCormick (2000). 
 
6.2. Optimization 
 
 For the model optimization, a simple brute force algorithm was used – this 
approach checks all possible variants of the parameter from the set of possible 
combinations. For instance, for moving average parameter – window length, we 
start the optimization from taking 3 last prices, including the current one and 
then we check the following lengths: 6, 9, 12 with the step 3 until the length is 
smaller than 20. For every window length forecasting metrics are calculated 
(described in 4.1) and the best model (the optimal window length) is taken to 
forecast next 10000 values.  
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 An explanation what parameters were optimized for every model can be found 
below: 
1) moving average was trained on bid or ask prices. Only one parameter was 

optimized ”window length” – indicating how many quotations were used to 
calculate the forecasts of the model. The optimal value was selected from the 
set of values (3, 6, 9, 12, 15, 18).  

2) linear regression model was also trained on bid or ask prices. It was as-
sumed that endogenous variable is a predicted, next bid or ask price and  
exogenous prices are last ݊ bid or ask prices, and the number of exogenous 
prices – ݊ is chosen using the brute force optimization from the set of values 
(9, 12, 15, 18). 

3) exponential smoothing model was trained on bid or ask prices. Only one 
parameter was optimized – a smoothing parameter called ”alpha”. The opti-
mal value was selected from the set of values (0.1, 0.2, 0.3, 0.4, 0.5, 0.6), 

4) Kalman filter was also trained on bid or ask prices. Two internal model pa-
rameters ”Q” and ”R” were optimized. Furthermore, for Kalman filter, two ini-
tial values for every calculation were taken arbitrary  ܲ = 0, ݔ = 0. These 
two parameters were selected from the set of values (0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9), 

5) ARMA and ARIMA models were calculated from logarithmic changes of 
bid/ask prices. Both models were chosen to the research due to the fact that 
the exchange rate time series tend to have stationary and non-stationary pe-
riods. The optimization of ARMA and ARIMA models was performed by 
checking the following combinations of autoregressive parts and moving  
average parts: 
― ARMA(p,q) – with the following autoregressive part p and moving average 

part q – (1, 0), (1,1), (1,2), (0,1) (2,1), (2,2), (2,0), (0,2), 
― ARIMA(p,1, q) – with the following autoregressive part p and moving  

average part q – (1,1,0), (1,1,1), (1,1,2), (0,1,1) (2,1,1), (2,1,2), (2,1,0), 
(0,1,2). 

6) logistic regression and linear discriminant analysis were trained on logarith-
mic changes of bid/ask prices. These two machine learning models were 
trained by providing an input vector of logarithmic price changes with  
a labeled outcome based on the next bid/ask price: 
― 1 when the next bid/ask price was higher than the previous one, 
― 0 when the next bid/ask price was equal to the previous one, 
― 1 when the next bid/ask price was lower than the previous one. 

 The length of input vectors was optimized. The best model was selected after 
checking the historical performance of models trained on following input vectors 
lengths (3, 6, 9, 12, 15, 18). Given such training, these models were taught how 
to predict a direction of bid/ask price change.  
 Table 2 summarizes the optimization phase.  
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Table 2. OPTIMIZATION PARAMETERS WITH POSSIBLE VALUES 

Method Parameter From To Step 

Moving average window length 3 20 3 
Exponential smoothing  alpha  0.1 0.6 0.1 
Linear regression window length 9 20 3 

Kalman filter 
Q 0.1 0.9 0.1 
R 0.1 0.9 0.1 

Logistic regression values used for training  3 20 3 
Linear discriminant analysis values used for training  3 20 3 

 
 Surprisingly, after the optimization phase, the best forecasting results for 
many subseries were achieved, using the same internal model parameters like:  
― for Kalman filter alpha=0.1 beta=0.1,  
― for exponential smoothing alpha=0.5, 
― for linear regression the minimal window length 9 observations, 
― for moving average the minimal value equal 3 observations, 
― for machine learning methods usually 3 last logarithmic returns were taken. 
 That leads to the conclusion that the last prices which are taken to calculate  
a forecast, tend to have the highest significance of all of the observations. Par-
ticularly, we can see that analyzing the exponential smoothing model. If it could 
have been possible for the alpha to take a value 1, it would have become a na-
ive forecasting method, due to the process of the optimization. That is why the 
maximum value was restricted to 0.6.  

 
7. PROBLEMS WITH FORECASTING HIGH-FREQUENCY DATA  

AND SOLUTION 
 

 During the research process, few problems appeared. First of them was con-
nected with the repeated bid or ask values in the analyzed time series. It was 
caused by adjusting only one value of the tick while keeping the second value at 
the same level (i.e. ask value was changing when bid stayed the same for sev-
eral ticks). This behavior can be seen in almost every analyzed time series. In 
such case, the data were not interrupted manually (for instance by cleansing), 
because of the bid and ask prices are unbreakable part of the tick, but even 
though it might have caused many problems during forecasting and less accu-
rate predictions.  
 A solution for modeling price changes when the price is the same for several 
values, is developing models which can predict the fact that the price will not 
change in the next tick. Most often the subparts of the time series with the same 
prices are encountered when there is a lack of volatility, especially during the 
night. A predicting model which can detect such subparts of the time series can 
probably outperform described models.  
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 That is the reason why it was worth to check the performance of the models 
forecasting a direction of bid/ask price change. In this case, the accuracy means 
how many times the method was correct forecasting that the price will go up, 
down or it will stay the same, divided by the overall number of forecasts. Given 
these three states (up, down, the same) it was possible to introduce machine 
learning algorithms from the family of supervised learning models which can be 
taught how to predict price changes.  
 In the work of Moody, Wu (1995), the authors found a relationship between 
the forecasting accuracy and bid/ask spreads on tick-by-tick data. Accordingly, 
this research was focused on finding a possible relationship between values of 
the Hurst exponent and the forecasting accuracy of statistical models and ma-
chine learning models. It is worth to check in further extensions of the research if 
there is a seasonality in intraday values of the Hurst exponent and how much it 
affects the forecasting results. The research conducted by Bayraktar et al. 
(2003) shows that a seasonality in intraday financial data (S&P 500) can affect 
the Hurst ratio estimation. In order to achieve the robustness of the Hurst expo-
nent estimation, the authors suggest using wavelets with at least two vanishing 
moments. 
 

8. BENCHMARKS AND FORECASTING ACCURACY MEASURES 
 
 Every forecasting technique must be evaluated before a possible application 
in solving a real economic problem. It is good to have some benchmarks which 
can be used for comparisons. Gately (1995) has shown that machine learning 
methods tend to have a better performance when predicting price changes ra-
ther than making point forecasts. Due to that fact, two machine learning models 
chosen in this research (described in paragraphs 5.7 and 5.8) were configured 
to predict price changes (increased, decreased, without change). This solution is 
recommended by the literature (i.e. Gately, 1995).  
 In the first research, the methods from the paragraphs 5.1 to 5.6 were ana-
lyzed and following accuracy measures MAE, MSE, RMSD, MAPE and AMAPE 
were calculated for every one of them3. The AMAPE (adjusted mean absolute 
percentage error) measure was used as a tool for comparing results. For com-
paring different currency data sets (varying descriptive statistics) AMAPE error, 
from all measures used to estimate how close forecasts or predictions are to the 
eventual outcomes, is the most accurate. It makes possible to compare currency 
data sets with each other in a fair manner which is described by (Doman, Do-
man, 2009). The metric is defined by the formula: 
                      

3 The MAE, MSE, RMSD, MAPE results are available on public repository for every exchange rate 
in unstructured output from the scripts on: https://github.com/rszostakowski/phd/tree/master/1Article/ 
resultsForEveryExchangeRate. 
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ܧܲܣܯܣ  =  1ܰ  ฬݕ௧ା − ௧ାݕො௧ାݕ + ො௧ାฬேݕ

ୀଵ , (21)

 
where: 
 ܰ  – number of forecasts,  ݕො௧ା  – a point forecast in the future, ݅  – the length of the forecast period,  ݐ  – number of observations in the

testing data set. 
 
 Moreover, in this part of the research, a naive forecasting was used as  
a benchmark. In this model, the current price is a forecast, without adjusting 
them or attempting to establish causal factors:  
 
ො௧ା|௧ݕ  = ௧. (22)ݕ
 
 In the second research, the highest accuracy of forecasting a direction of 
bid/ask price change was used to compare methods between each other. Ma-
chine learning methods were trained to forecast a possible up, down price 
movements or without changes. For making it comparable to other methods, 
point forecasts obtained using methods from 5.1 to 5.6 were also classified into 
these three states, i.e. if exponential smoothing forecast indicates that the price 
will go up we have a classification to the “up” state. Owing to that it was possible 
to calculate the accuracy of every described method in the article. For bench-
marking two artificial time series were created:  
― ”Random up and down” – a realization of the Markov process with two possi-

ble states (price went up or down) with the equal probability 0.5 of appear-
ance, 

― ”Random up and down or the same” – a realization of the Markov process 
with three possible states (up or down, stayed the same) with the equal prob-
abilityቀଵଷቁ of appearance. 

 
9. EMPIRICAL STUDY 

 
9.1. Statistical models forecasts 
 
 The Hurst exponent analysis was performed for every rolling window of 150 
values and the result was assigned to the last tick from these 150 values. 
It was conducted to check, if subseries with a higher or lower value of the 
Hurst exponent than 0.5 (random time series) can be used to make more ac-
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curate forecasts, than for the series with a value of the Hurst exponent oscil-
lating around 0.5. Thereafter, for every tick, the assigned value of the Hurst 
exponent was classified into the segments from 0 to 1 with a step 0.1. The 
results of the Hurst exponent classification can be seen in figure 2. Surpris-
ingly, the values of the Hurst exponent bigger than 0.8 were not obtained. 
They are typical for time series with a strong trend. The majority of Hurst ex-
ponent ratios was classified into the first two segments (from 0 to 0.1 and 
from 0.1 to 0.2).  

 
Figure 3. The Hurst exponent segment-based classification of forecasting accuracy measured  

by AMAPE, historical, tick-by-tick foreign exchange rates data from one trading day  
– 5pm 05-03-2012 to 5pm 06-03-2012 

 

 
 For every statistical model, an average adjusted mean absolute percentage 
error (AMAPE) was calculated to show how close forecasts of these models are 
to the eventual outcomes4. It was done to show a general performance of the 
forecasting methods, according to the Hurst exponent classification. The results 
can be seen in figure 3. 
 Unfortunately, average AMAPE for statistical models seems to be higher than 
AMAPE for naive forecasting. It proves, that the forecasting using sophisticated 
statistical methods on the high-frequency data cannot outperform the results of 
                      

4 The partial results of AMAPE measures for every exchange rate are available on github reposito-
ry: https://github.com/rszostakowski/phd/blob/master/1Article/ResultsWithHurstExponent.xlsx. 
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naive forecasting. The same conclusion can be found in the work of Cheung 
(1993), Green, Armstrong (2015) and Kilian, Tylor (2001). The closest method to 
achieving this goal was Kalman Filter. Surprisingly, the average performance of 
ARMA and ARIMA methods was similar for most of the exchange rates. Moreo-
ver, their forecasts were more inaccurate than the predictions of trivial methods 
like exponential smoothing for the Hurst ratio between 0 and 0.3 but for the 
Hurst exponent segments above 0.4 they increased their performance and were 
more accurate than any other method except for the naive forecasting. Unsatis-
factory results were obtained due to a large number of data, which were repeat-
ed (bid and ask prices). The worst method for all Hurst exponent segments was 
the linear regression. Even strong persistence observed for the highest values of 
the Hurst exponent did not improve significantly the results of the linear regres-
sion model.  
 The most important discovery found in this research is the fact that the fore-
casting errors tend to decrease for every forecasting method when the value of 
the Hurst exponent increases. This observation is persistent for all forecasting 
models. Even for the Hurst exponent ratio close to 0.5, which indicates a random 
time series, better forecasts were obtained than for values of the Hurst exponent 
close to 0 (a mean-reverting time series). This fact proves the hypothesis of the 
research that forecasting methods are more accurate when the value of the 
Hurst exponent increases.  

 
9.2. Forecasting a direction of bid/ask price change 

 
 In the second part of the research, an alternative approach to forecasting  
a point value was introduced. Forecasting a direction of bid/ask price change 
was chosen to overcome some of the drawbacks of the previous approach. For 
every method, an average accuracy of forecasting a direction of bid/ask price 
change was calculated and classified to the Hurst exponent ranges5. It is worth 
to mention that for time series without many repeated values a benchmark pro-
cess “random up and down” should have an average accuracy of forecasting 
close to 0.5. As we can see in figure 4 a higher mean forecasting accuracy was 
obtained for the “random up and down or the same” process which indicates that 
analyzed times series have many repeated bid/ask prices. It is approximately the 
one-third of ticks. The second process slightly improves its performance for val-
ues of the Hurst exponent above 0.6 due to the fact that the statistical sample for 
these segments is too small (figure 2).  
                      

5 The accuracy of forecasting a direction of bid/ask price change for every exchange rate  
are available on github repository: https://github.com/rszostakowski/phd/blob/master/1Article/ 
ResultsWithHurstExponent.xlsx.  
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Figure 4. The Hurst exponent segment-based classification of mean accuracy of forecasting  
a direction of price change, historical, tick-by-tick foreign exchange rates data from one trading  

day – 5pm 05-03-2012 to 5pm 06-03-2012 

 
 
 In this part of the research, the most accurate forecasting results were ob-
tained by models based on machine learning techniques – the logistic regres-
sion and the linear discriminant analysis. For both of them, the average accuracy 
was close to 0.6, which means that in average the machine learning models 
were accurate in predicting 60% price directions. Such good results indicate that 
this approach can be successfully applied in liquidity forecasting or in active 
investment. Moreover, in most cases, the moving average model outperformed 
the random processes and other statistical models like ARMA and ARIMA. The 
most sophisticated statistical method like Kalman Filter appeared to be inaccu-
rate. It might have been caused by too narrow model calibration.  
 Interestingly, for GBP/PLN ask and bid series the average forecasting accura-
cies were higher than for any other currency. Moreover, for these two series 
even models like Kalman filter, moving average and exponential smoothing were 
more accurate than the naïve forecasting. It might have been caused by a lower 
liquidity observed on GBP/PLN exchange rate. It means that almost every new 
tick in the series was changing both of the prices (bid and ask) simultaneously.  
 This part of the research has revealed that the statistical models tend to have 
a contrary tendency to the one, discovered in the first part of the research. For 
them, an average accuracy of forecasting a direction of bid/ask price change 
decreases when the value of the Hurst exponent increases. Fortunately, this 
tendency is not observed in the forecasting results of machine learning methods. 
These methods seem to benefit from the increase of the Hurst exponent – the 



220 Przegląd Statystyczny, tom LXV, zeszyt 2, 2018 
 
bigger the value of the Hurst exponent the higher their average performance. 
That indicates that a further research into statistical learning methods should be 
pursued. 
 

10. CONCLUSIONS AND FURTHER RESEARCH 
  

 In this paper, seven different exchange rates series were tested using the 
Hurst exponent analysis (full order book, bid and ask prices). For most of the 
data, the values of the Hurst exponent oscillated around 0.2. These results differ 
from the study of Mitra (2012), who has shown that the Hurst exponent calculat-
ed from daily returns of stock market indices oscillates around 0.5. 
 Unfortunately, the first part of the research revealed that analyzed statistical 
methods tend to be more inaccurate than the naive forecasting on high- 
-frequency-data. Moreover, their average AMAPE was higher than the average 
adjusted mean absolute percentage error of naïve forecasting for all Hurst expo-
nent segments. From the other side, the results from the second part of the re-
search were far more satisfying. The machine learning methods used for predict-
ing a direction of bid/ask price change were more precise than the random pro-
cess and the statistical methods. Finally, none of the methods were able to show 
a significant increase in their performance for mean reverting parts of the time 
series.  
 The most important research discovery is the fact that the average fore-
casting errors tend to decrease with an increase of the Hurst exponent for 
statistical and machine learning methods. Moreover, for the values of the 
Hurst exponent close to 0.5 forecasts from all analyzed models, seem to be 
more accurate than for the values which indicate a mean reverting time series 
(from 0.1 to 0.2). A positive effect of analyzing the Hurst exponent in forecast-
ing was observed in the research paper of Mitra (2012) for time series with 
the Hurst exponent bigger than 0.5. Unfortunately, the author did not analyze 
the effect of the Hurst exponent below 0.5 on forecasting, which was done in 
this article.  
 Furthermore, for machine learning methods the accuracy of forecasting  
a direction of price change tends to increase when the value of the Hurst expo-
nent increases. According to the author’s best knowledge, this approach has not 
been analyzed in any other research paper. Finally, only machine learning 
methods discovered nonlinear structures hidden in the data and proved to be 
successful in predicting price changes. Their accuracy usually oscillated around 
60%.  
 Forecasting high-frequency data of exchange rates seems to be very com-
plex, due to the currency market characteristics (volume, number of investors). 
The research has shown several areas for an improvement in the art of forecast-
ing which tend to follow in three directions.  
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 First of them, is the path of analyzing market characteristics. It is worth to try 
creating time series regimes when it is highly probable to outperform the naive 
forecasting based on other metrics than the Hurst exponent. A second path 
leads to developing better forecasting models. Vengertsev (2014) and Ghah-
ramani (2001) have shown that more advanced machine learning methods like 
support vector machine or deep learning models which can be successfully ap-
plied in the forecasting. Moreover, based on the papers written by Menkhoff, 
Taylor (2007) and Osler (2003) it is worth to apply technical analysis indicators 
as input vectors to machine learning models.  
 Finally, it is worth to try to develop a statistical model which would detect the 
fact, that a bid or ask price can be unchanged in the future tick. It can increase 
forecasting performance and lead to outperforming the naive forecasting model.  
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JAKOŚĆ PROGNOZOWANIA CEN W ZALEŻNOŚCI OD WYKŁADNIKA 
HURSTA PRZY WYKORZYSTANIU DANYCH WYSOKIEJ CZĘSTOTLIWOŚCI 

Z RYNKU WALUTOWEGO 
 

Streszczenie 
 

 Na przestrzeni ostatniego wieku przeprowadzono wiele badań na temat uży-
teczności metod statystycznych w prognozowaniu cen na rynkach finansowych. 
Niniejszy artykuł wyjaśnia, dlaczego większość z nich zawiodła, bazując na teorii 
rynku fraktalnego oraz na podstawie badań przeprowadzonych przy użyciu da-
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nych wysokich częstotliwości z głównych par walutowych. Dla wykorzystanych 
modeli statystycznych i metod uczenia maszynowego zostały policzone miary 
takie jak AMAPE oraz trafność prognozowania kierunku zmian cen w zależności 
od wykładnika Hursta. Artykuł pokazuje, że średni błąd prognozowania zmniej-
sza się wraz ze wzrostem wartości wykładnika Hursta dla zastosowanych modeli 
prognostycznych. Zaprezentowana w artykule metodyka prognozowania może 
być skutecznie wykorzystana do podejmowania trafniejszych decyzji inwestycyj-
nych oraz do budowy automatycznych systemów decyzyjnych.  
 Słowa kluczowe: dane wysokich częstotliwości, prognozowanie, uczenie 
maszynowe, metody statystyczne, mikrostruktura rynku, wykładnik Hursta 
 
 

THE USE OF THE HURST EXPONENT TO INVESTIGATE THE QUALITY  
OF FORECASTING METHODS OF ULTRA-HIGH-FREQUENCY DATA  

OF EXCHANGE RATES 
 

Abstract 
 

 Over the last century a variety of methods have been used for forecasting 
financial time data series with different results. This article explains why most of 
them failed to provide reasonable results based on fractal theory using one day 
tick data series from the foreign exchange market. Forecasting AMAPE errors 
and forecasting accuracy ratios were calculated for statistical and machine 
learning methods for currency time series which were divided into sub-segments 
according to Hurst ratio. This research proves that the forecasting error de-
creases and the forecasting accuracy increases for all of the forecasting meth-
ods when the Hurt ratio increases. The approach which was used in the article 
can be successfully applied to time series forecasting by indicating periods with 
the optimal values of the Hurst exponent.  
 Keywords: high-frequency data, forecasting, machine learning, statistical 
models, microstructure, Hurst exponent 
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1. INTRODUCTION

Dynamic changes noted on the world markets, which are predominantly con-
nected with economic slowdown coerce the consideration of the uniformity of 
development of each regions. A particularly interesting area of research in this 
field is the impact analysis of social and economic development for example on 
the basis of sustainable development indicators: before, during and after the eco-
nomic slowdown in 2007–2008. The analyses of that type allow to track changes 
in individual EU countries, forming a single organism, but they are characterized 
by differing levels of development, with different resistance to the crisis of 2007– 
–2008 and often completely different social and economic realities.

The basic question we ask, whether it is possible to talk about balancing the
socio-economic development in the European Union? Posing such questions is 
particularly important in the case of such political and economic structures such 
as European Union. The basic, strategic  developmental objectives of the Euro-
pean Union include the aspiration to harmonious development of all of its mem-
bers, however, it is extremely difficult task as both the statistical data and the 
operational experience prove. A separate, and extremely important issue is the 
measuring of homogeneity (heterogeneity) of particular regions of the European 
Union.  

The purpose of the paper is study of spatial uniformity in the field of sustaina-
ble development of European Union and geographical regions of Europe ana-

1 West Pomeranian University of Technology Szczecin, Faculty of Economics, Department of Ap-
plied of Mathematics in Economy, 31 Janickiego St., 71–270 Szczecin, Poland, corresponding au-
thor – e-mail: iwona.bak@zut.edu.pl. 

2 West Pomeranian University of Technology Szczecin, Faculty of Economics, Department of Ap-
plied of Mathematics in Economy, 31 Janickiego St., 71–270 Szczecin, Poland. 

3 Research results presented in this paper are an element of research project implemented by the 
National Science Center Poland under the grant OPUS13 no UMO-2017/25/B/HS4/02172. 
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lyzed by the prism of EU countries located in these regions before, during and 
after the economic crisis in 2007–2008. In the work to study the spatial differen-
tiation of social and economic development of European Union, on the basis of 
sustainable development indicators presented by Eurostat, the taxonomic 
measure of development based on median Weber vector as well vector calculus 
were used. The previous study by the authors (Bąk, Cheba, 2017) confirmed the 
existence of significant heterogeneity of spatial development of individual geo-
graphical regions of the European Union. Therefore, further research will con-
centrate on studying the applications of discussed methods will be based on 
data sustainable development indicators, analyzed separately before, during and 
after the period of economic slowdown. The results presented in the work will 
contribute to increasing knowledge about methods testing homogeneity (hetero-
geneity) of the development in the regional aspect and methods showing the 
direction of the analyzed changes in the situation of economic crisis.  

The paper is organized as follows: the second part describes the methodolog-
ical issues of the empirical analysis presented in the paper, including indicators 
and statistical methods description. The following part presents study results 
which were divided into two topics: results of EU Member States' ranking in the 
field of sustainable development and uniformity of the balanced development of 
the European Union. The final part of the article put forward conclusions.  

 
2. METHODOLOGICAL ISSUES OF THE EMPIRICAL ANALYSIS 

 
2.1. Background 

 
The question how to measure the social and economic development is partic-

ularly important in the face of growing crises that have economic, political or 
social origins (Peacock et al., 1988; Rigobon, 2003; Lopez, 2005; Autor et al., 
2008; Klenert et al., 2015; Kobayashi, Shirai, 2016; Moomaw et al., 2017). As it 
has been known for a long time that classical measures of economic develop-
ment don’t reflect well enough the actual development of countries, the 
measures that describe also the qualitative aspects of their prosperity (including 
the social and environmental ones) have been sought (Eagle et al., 2010). One 
of the studies’ direction on new economic development measures was the idea 
of sustainable development which was born in response to the criticism of over-
exploitation of natural environment that led to increased global threat of natural 
disasters (Duran et al., 2015). Information about risks related with excessive use 
of natural environment had been published in U Thant’s report of 1967 (Mead-
ows, 1973). These threats, particularly the ones related with the depletion of 
natural resources and the degradation of ecosystems are also mentioned in the 
1972 Club of Rome report The Limits to growth (Berger, Zwirner, 2008). While, 
the concept of sustainable development was first formulated explicitly during the 
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Third UNEP Program in 1975, as ”(...) such a course of inevitable and desirable 
economic development that would not materially and irreversibly affect the hu-
man environment and would not lead to the degradation of the biosphere and 
would not undermine the laws of nature, economics and culture” (UN, 1975). 
Next this concept was presented in 1987 in ”Our Common Future”, a publication 
also known as Brundtland Report. The Report was created by the UNO commis-
sion established with the intention of developing a global programme of changes 
in the concept and practice of development. It states that the rapid growth of 
civilisation, equated to the increased general well-being, leads to overexploita-
tion of natural resources and, in effect, can endanger the global ecosystem. In 
this report sustainable development was defined as ”sustainable development to 
meet current needs without the risk that future generations will not be able to 
meet their needs” (WCED, 1987). 

The idea of sustainable development is not contradictory to the growth in 
prosperity. However, the emphasis is on the optimalisation of economy with 
simultaneously minimised consumption of raw materials, energy and water as 
well as the reduced human environmental impact. Consequently, the principal 
rule of the sustainable development is the need to address the three pillars: the 
society, economy and environment (van den Bergh, Hofkes, 1998; Hopwood et 
al., 2005). Also, this concept points to the need to cross both the institutional and 
geographical borders in order to coordinate strategies and make proper deci-
sions in the framework of the cooperation of governmental agencies from differ-
ent countries. It means that it is necessary to look at the current problems faced 
by the European Union not only from the Union’s or individual countries’ per-
spective, but also from the perspective of individual regions that are functionally 
or geographically related. More than a decade after the first EU enlargement 
following the accession of the East European countries in 2004, the divisions 
within the EU, such as distinguishing between the old and new EU Member 
States, still seem to exist. These divisions are also noticeable when we compare 
the indices of the EU sustainable development changed before, during and after 
the economic slowdown in 2007–2008. The European Commission announces 
the results of monitoring the sustainable development (SD) indices on the bian-
nual basis. Its latest report was published in 2015 (European Union, 2015). The 
implementation of the EU Sustainable Development Strategy (EU SDS) is moni-
tored by means of the sustainable development indicators (SDI) published by 
Eurostat. Until recently (the change of the way of SDI presentation according the 
Agenda 2030 took place on 15.11.2017) the SDIs had a hierarchic structure 
whose components were divided into three levels. At the top there were 11 
Headline Indicators that were intended to give an overall picture of the progress 
in terms of the key challenges of the EU SDS. The second level was represent-
ed by 31 Operational Indicators that related to the operational objectives of the 
strategy, while on the third, lowest level there were 84 Explanatory Indicators 
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that illustrated the progress of the actions described in the SDS. In this paper 
these indicators were used to study the spatial differentiation of sustainable de-
velopment of European Union countries. 

The first step of these studies in the area of sustainable development is usual-
ly the analysis of the EU achievements in subsequent years and the assessment 
of their compliance with the strategic targets. In spite of dynamic changes in 
individual areas of the EU sustainable development, it is necessary to analyse 
as well the internal homogeneity of the EU in this aspect. The majority of pub-
lished studies (Mulder, van den Bergh, 2001; Stefanescu, On, 2012, Boda et al., 
2015; Gnimassoun, Mignon, 2015) are based on the assessment if the EU is 
moving towards the adopted targets. Therefore, the authors concentrate more 
on assessing the existing level of sustainable development than on the very 
process of balancing the sustainable development. However, the analysis of 
internal imbalances among member states proves that developmental differ-
ences are significant. The inequalities exist both on the international and region-
al level. Information obtained from the analyses of individual SD indicators, con-
cerning both individual countries and geographical regions, was used in a study 
on the SD level in the EU countries in 2004, 2008 and 2014. Apart from the 
above analyses, the purpose of which was to assess the impact of the 
2007/2008 crisis on the sustainable development in individual EU Member 
States, the collected data helped conduct a spatial analysis of the SD distribu-
tion across the EU geographical regions and their countries.  

 
2.2. Objectives, scope and methodology of the study 

 
The objectives of the study were to find an answer to the following questions: 

1. Is it possible to talk about balancing the sustainable development in the Euro-
pean Union? 

2. How big is the unevenness of sustainable development of particular UE re-
gions, namely: 
a) How spatially homogeneous (heterogeneous) are those regions? 
b) Are the identified changes in time homogenous (heterogeneous)? 

3. How has the position of the European Union countries in the field of sustaina-
ble development changed before, during and after the economic slowdown in 
2007–2008? 
The analysis of similarities and differences between the European Union 

countries was based on sustainable development indicators at the EU level (Eu-
rostat, 2017). At the beginning of the study database was set up. In the paper 
SD indicators presented by Eurostat were used. The original data base included 
47 indicators describing 12 themes of the European sustainable development 
from 2004, 2007 and 2014.  
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In the next step diagnostic features were selected for the study. The selection 
criteria is usually divided into two groups: the content related and for-
mal/statistical ones. In the first approach the set of diagnostic features contains 
such values that, according to the obtained knowledge about the phenomena 
under study, are the most typical of the compared objects. In the second ap-
proach, the selection of features follows a specific formal procedure. The most 
appropriate is a two–stage selection procedure where both approaches are sim-
ultaneously used. After defining and gathering data concerning the initial set of 
features, proper verification actions are usually performed against two most im-
portant criteria: 
1. Variability – the features should be diverse, i.e. effectively discriminating the 

objects. 
To assess the variability, a diversity coefficient, calculated from the formula 

(1), is used: 

 
 ܸ = ܵ̅ݔ, (1)

 
where: ݔഥ݆ – arithmetic mean of ܺ , ܵ value – standard deviation of j-th feature ܺ , ݆ = 1, 2, … ݉, ݉ – number of features. 
 

Taking into account the former of this criterion, 6 diagnostic features were 
eliminated from the study, because the coefficients of variation calculated for 
them were low throughout the whole period of study (at 10% or lower). 

2. Correlation – two strongly correlated features carry similar information; there-
fore one of them is redundant. For this reason, the correlation indicators of all 
the features should be taken into account, and then, the most suitable verifi-
cation method should be applied to eliminate features most similar to others. 
The starting point here is to create a matrix of feature correlations:  

 
 ܴ = ൦ 1 ଵଶݎ ⋯ ଶଵݎଵݎ 1 ⋯ ⋯ଶݎ ⋯ ⋯ ଵݎ⋯ ଶݎ ⋯ 1 ൪, (2)

 
where: ݎ  – the Pearson linear correlation coefficient of the ݆௧ and ݇௧ fea-
ture. 
 
In the next step, the matrix of correlations among the features was construct-

ed for every analysed year separately. When examining the similarity of the fea-
tures by means of the coefficients of variation, it was found that some indicators 
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were very strongly correlated. Therefore, the formal approach, a parametric 
method proposed by Hellwig (Nowak, 1990)4 was used to select a final set of 
diagnostic features. The starting point in this method is the matrix of the coeffi-
cients of correlation (formula 2) among the potential diagnostic features. The 
classification criterion is the parameter r* also called a critical value of the corre-
lation coefficient so that 0<r*<1. The value of r* can be chosen at the research-
er’s discretion or determined in a formal way5.  

The features from the preliminary list can be similar to one another due to 
their strong correlation, hence they can form clusters. The clusters are such 
subsets of features where the least similarity between them is not smaller than 
r*. The clusters contain one central features and several satellite ones. A satel-
lite feature of an individual central feature is the one whose similarity to the cen-
tral feature is not smaller than r*. The features form a cluster if they consist of 
one central feature and at least one satellite feature. Then, they are called sys-
temic features. The features that are not attributed to any cluster are called iso-
lated features. The central and isolated features create the so called base con-
figuration of features and they are considered to be diagnostic features. Accord-
ing the proposal of Zeliaś (2000) the final set of data was created by the features 
(both central and satellite) whose frequency of occurrence was the highest in the 
whole analyzed period.  

To the final set of diagnostic features, which has become a basis for further 
empirical studies, the following indicators have been selected6: 
a) in the area of socio-economic development (3 indicators): young people nei-

ther in employment nor in education or training (NEET) (15–24 years), % of 
the total population in the same age group – (x1aDO); total R&D expenditure, 
% of GDP – (x2aSE); total unemployment rate, % – (x3aDE); 

b) in the area of sustainable consumption and production (2 indicators): genera-
tion of waste excluding major mineral wastes, kg per capita – (x4bDO); final 
energy consumption7, 1000 tons of oil equivalent – (x5bDE);   

                      
4 It is the most commonly used method of diagnostic characteristics selection. However, the 

method is not perfect: it is sensitive to outliers (or asymmetric distribution of variables) and it takes 
into account only direct relationships of a given characteristic with other ones, ignoring indirect 
relationships. Improved resistance of the method to outliers can be achieved by replacing in the 
first step the sum of elements in a column (or a row) of the correlation coefficient matrix by their 
median. The second fault can be eliminated by means of the matrix inverse method (Nowak, 1990). 

5 In the paper it was assumed: r = 0.5. 
6 Symbols:, a, b, c, d…j – denote the SD theme, S denotes the stimulant, D – the destimulant, 

while the symbols H, O, E, C – the indicator level: H – headline indicator, O – operational, 
E – explanatory and C – contextual. 

7 According to the Eurostat: ”this indicator expresses the sum of the energy supplied to the final 
consumer’s door for all energy uses. It is the sum of final energy consumption in industry, transport, 
households, services, agriculture, etc. Final energy consumption in industry covers the consumption 
in all industrial sectors with the exception of the ”Energy sector”. 
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c) in the area of social inclusion (4 indicators): early leavers from education and 
training8, % – (x6cDO); tertiary educational attainment, by sex, age group 30–
34, % – (x7cSO); long–term unemployment rate – (x8cDE); adult participation in 
learning (lifelong learning)9, % – (x9cSE); 

d) in the area of demographic changes (3 indicators): employment rate of older 
workers, % – (x10dSH); total fertility rate, number of children per woman- 
(x11dSE); old-age dependency ratio10, per 1000 persons of working age (15– 
–64) – (x12dDC); 

e) in the area of public health (1 indicator): life expectancy at birth of males, 
years – (x13eSH); 

f) in the area of climate change and energy (4 indicators): primary energy con-
sumption11, million TOE (tons of oil equivalent) – (x14fDH); share of renewable 
energy in gross final energy consumption, % – (x15fSO); electricity generated 
from renewable sources, % – (x16fSE); share of renewable energy in fuel con-
sumption of transport, % – (x17fSE); 

g) in the area of sustainable transport (2 indicators): energy consumption of 
transport relative to GDP, index (2010–100%) – (x18gDH); energy consumption 
by transport mode – road transport, 1000 tons of oil equivalent – (x19gDE); 

h) in the area of natural resources: no indicators; 
i) in the area of global partnership (1 indicator): CO2 emissions per inhabitant in 

the EU and in developing countries, tons – (x20iDE); 
j) in the area of good governance (2 indicators): shares of environmental taxes 

in total tax revenues from taxes and social contributions, % – (x21jDO); level of 
citizens´confidence in EU institutions (for sub-theme policy coherence and  
effectiveness), % – (x22jSO). 

                      
8 According to the Eurostat: „the indicator is defined as the percentage of the population aged 

18–24 with at most lower secondary education and who were not in further education or training during 
the last four weeks preceding the survey. Lower secondary education refers to ISCED (International 
Standard Classification of Education) 2011 level 0–2 for data from 2014 onwards and to ISCED 1997 
level 0–3C short for data up to 2013. The indicator is based on the EU Labour Force Survey”. 

9 According to the Eurostat: „the indicator is defined as the percentage of the population aged 18– 
–24 with at most lower secondary education and who were not in further education or training during the 
last four weeks preceding the survey. Lower secondary education refers to ISCED (International Stand-
ard Classification of Education) 2011 level 0–2 for data from 2014 onwards and to ISCED 1997 level  
0–3C short for data up to 2013. The indicator is based on the EU Labour Force Survey”. 

10 According to the Eurostat: ”this indicator is the ratio between the number of persons aged 65 
and over (age when they are generally economically inactive) and the number of persons aged 
between 15 and 64. The value is expressed per 100 persons of working age (15–64)”. 

11 According to the Eurostat: by ”Primary Energy Consumption” is meant the Gross Inland Con-
sumption excluding all non-energy use of energy carriers (e.g. natural gas used not for combustion 
but for producing chemicals). This quantity is relevant for measuring the true energy consumption 
and for comparing it to the Europe 2020 targets. The ”Percentage of savings” is calculated using 
these values of 2005 and its forecast for 2020 targets in Directive 2012/27/EU; the Europe 2020 
target is reached when this value reaches the level of 20%”. 
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The set of diagnostic indicators chosen for the description of the compared 
objects can contain the variables whose influence on the phenomenon under 
study has different direction, i.e. stimulants and destimulants. The stimulants are 
variables whose bigger values indicate a higher level of progress of a given 
phenomenon, while the destimulants are diagnostic characteristics whose 
smaller values indicate a higher level of development12 (Nowak, 1990). The 
classification of diagnostic characteristics selected for the study into stimulants 
and destimulants is shown in table 1. 

 
Table 1. DIVISION OF DIAGNOSTIC FEATURES INTO STIMULANTS AND DESTIMULANTS 

Stimulants Destimulants 
x2aSE, x7cSO, x9cSE, x10dSH, x11dSE, x13eSH, x15fSO, x16fSE, 
x17fSE, x22jSO 

x1aDO, x3aDE, x4bDO, x5bDE, x6cDO, x8cDE, x12dDC, x14fDH, 
x18gDH, x19gDE, x20iDE, x21jDO 

S o u r c e: own elaboration. 

 
2.3. Description of used mathematical methods 
 

In the work to study the spatial differentiation of development of individual 
countries in the European Union, on the basis of sustainable development indi-
cators selected to the study13, the following methods were used: a) taxonomic 
measure of development based on median Weber vector and b) vector calculus. 

The linear assignment of European countries and defining typological groups 
of objects was conducted using the method based on the median Weber (1971) 
vector14. The positional option of the linear object assignment takes a different 
normalization formula, in comparison with the classical approach, based on 
a quotient of the feature value deviation from the proper coordinate of the Weber 
median and a weighed absolute median deviation, using the Weber median (Lira 
et al., 2002; Młodak et al., 2016)10: 
 
ݖ  = ݔ − 1,4826ߠ ∙ ݉ ܽ݀( ܺ), (3)

 
where: (ߠଵ, ,ଶߠ … , ݉ ,)   is the Weber medianߠ ܽ݀( ܺ) is the absolute median 
deviation, in which the distance from the features to the Weber vector is meas-
                      

12 Sometimes the category of nominants is used. In their case the most favourable situation is 
when they reach a fixed value or number interval.  

13 The median Weber vector was calculated on the basis of features by transforming destimulants 
into stimulants on the basis of the following formula: ݔᇱ = ܿ − ,ݔ ݅ = 1, 2, … , ݊, ܿ = 0. 

14 The median Weber is a multi-dimensional generalization of the classical notion of the median. 
It is a vector that minimizes the sum of Euclidean distance (Euclidean distance) of the data points 
representing the considered objects, and therefore is somehow ”in the middle” of them, but it is also 
robust to the presence of outliers (Młodak, 2006, 2014). 
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ured15, i.e.: ݉ ܽ݀൫ ܺ൯ = medୀଵ,ଶ,…,หݔ − ݆) ୨หߠ = 1, 2, … , ݉).  The synthetic measure ߤ is calculated on the basis of maximum values of normalized features, similarly 
to the Hellwig (1968) method:  

 
 ߮ = maxୀଵ,ଶ,…, , (4)ݖ

 
according to the following formula: 

 
ߤ  = 1 − ݀݀ି, (5)

 
where: ݀− = med(d)+2,5mad(d), where d = (d1, d2,…,dn) is a distance vector 
calculated using the formula: ݀ = medୀଵ,ଶ,… ,หݖ − ߮୨ห ∙ ݅ = 1, 2, … , ݊, ߮ –  the ݅-th 

coordinate of the development pattern vector, which is constituted of the maxi-
mum values of the normalized features.  

 
The assignment of objects with a positioning measure is the basis for a divi-

sion of objects into four classes. The most commonly used grouping method in 
the positioning scope is called the three medians method. It involves indicating 
a median of vector coordinates ߤ = ,ଵߤ ,ଶߤ … ,  then ,(ߤ)݀݁݉ , which is denotedߤ
dividing the population of objects into two groups Ω: those, for which the meas-
ure values exceed the median (are higher than it – Ωଵ) and those, for which the 
measure values do not exceed the median (are equal or lower than it – Ωଶ). Next 
the indirect medians are defined as: med(ߤ) = med:∈ஐೖ(ߤ), where k = 1, 2. This 

way the following groups of objects are created16: 
― Group I: ߤଵ > medଵ(ߤ), 
ߤ ― > medଵ(ߤ), 
― Group II: med(ߤ) < ߤ ≤ medଵ(ߤ), 
― Group III: medଶ(ߤ) < ߤ ≤ med(μ), 
― Group IV: ߤଵ ≤ medଶ(ߤ). 

The vector calculus was used for the examination of homogeneity of the Eu-
ropean Union. The theoretical foundations of vector calculus and the proposal of 
its implementation with regard to the examination of the level of development of 
socio-economic objects were presented for instance in the publications by 
Nermend (2009) and Nermend, Tarczyńska-Łuniewska (2013). This method is 
characterized by the high level of flexibility, especially in the case of vector 
                      

15 The Weber median was calculated in R program: l1median of package: pcaPP. 
16 Groups equinumerous are getting when the number of objects in the community is divisible  

by four. 
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measure constructed on the basis of scalar product and the arithmetic of the 
increase proposed by Borawski (2012). It allows to achieve additional infor-
mation about the uniformity of diagnostic objects included in the analysed object 
(in the paper considered by the prism of the countries located in European geo-
graphical regions). 

The vector calculus, depending on the adopted manner of computation of in-
cremental standard deviation and/or the increment of variance might be imple-
mented to research: a) spatial homogeneity of a set of elements located on 
a bigger spatial unit, for example the homogeneity of EU Member States located 
over a bigger region and b) time homogeneity of identified changes, for instance 
over the years. Calculations using synthetic vector measure starts with the des-
ignation of so-called ordered twos, which are used for further calculations in-
stead of actual values. These twos form: the mean and the standard deviation 
and the mean and the variance. In the case of testing the spatial homogeneity of 
the objects, the values of the analyzed indicators for smaller objects (subobjects, 
in the work: EU countries) located in the bigger area (in the work: in geograph-
ical regions of Europe) are taken into account and mean value (η ), standard 

deviation (σ ) and the variance (σଶ ) are computed on the basis on following 

formulas:  
a) mean value (η ): 

 
 η = ∑ ௫,ೖೕೖಿసభே , (6)

 
where: η  – the mean value of ݅-th feature for ݆-th object, N – the number of 

objects considered in study of spatial homogeneity for ݆-th object, ݔ,  – the 

value of ݅-th feature for ݇-th subobject in ݆-th object, 

 
b) standard deviation (σ ): 

 
 σ = ඩ∑ ቆݔ, − ߟ ቇଶேୀଵ ܰ , (7)

 
c) variance (σଶ ): 
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ଶ݆ߪ  = ∑ ቆݔ, − ߟ ቇଶேୀଵ ܰ . (8)

 
Mean and standard deviation as well as mean and variance are determined 

on the basis of the values of the analyzed indicators for smaller objects located 
on the area of larger objects form ordered twos, and the calculations for them 
are performed in parallel. 

The next step is to determine increases based on which further calculations are 
conducted. Similar calculations are performed also for a pair consisting of mean 
value and variance (Nermend, Tarczyńska-Łuniewska, 2013). 

 
 ቆΔ ,ߟ Δ ߪ ቇ = ቆߟ − ,ߟ ߪ −  ቇ, (9)ߪ

 
 ቆΔ ,ߟ Δ ଶߪ ቇ = ቆߟ − ,ߟ ଶߪ − ଶ ቇ,   (10)ߪ

 
where: ߟ  is the mean ݅-th variable ݆-th object, ߪ,  is standard deviation of ݅-th 

variable ݆-th object, ߟ,   are reference points, respectively for the growth of theߪ
mean and the standard deviation. Reference points can be arbitrarily chosen 
and should be identical for all increments of mean values, standard deviations 
and variances. In practice, in order to simplify a calculation most frequently it is 
taken as it equals zero. This means that by adding zero to the increment of the 
mean value, standard deviation or variance we obtain the mean value, standard 
deviation and variance17.  

 
In the next stage, the normalization of the designated values pairs (ordered 

twos) is carried out with the following formula (Nermend, Tarczyńska-Łuniewska 
2013): 

 
 ቆߟᇱ, Δ ᇱߪ ቇ = ቌΔߟ − Δߟపഥߪఎ , Δߪߪఎ ቍ, (11)

 
                      

17 This is possible until the reference point doesn’t change (Nermend, Tarczyńska-Łuniewska, 
2013). 
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and: 
 

 ቆߟᇱ, Δ ᇱߪ ቇ = ቌΔߟ − Δߟపഥߪఎ , Δߪଶߪఎ ଶ ቍ,                                              (12)

 
where: Δ̅ߟ – is an mean value of mean values, ߪఎ i ߪఎଶ  are their standard deviation 
and variance, respectively.  

 
Prior to the delimitation of synthetic measure a pattern (Δߟ,௪ ), which shows the 

most favorable values of the analyzed feature and anti-pattern (Δߟ,௪ ), which illus-

trates the least favorable values are determined. For this purpose, the value of the 
first and third quartile is used, which for the stimulant pattern (Δߟ,௪ ) assumes the 

values of the third quartile18 for stimulant and the first quartile for the destimulant 
as follows (Nermend, Tarczyńska-Łuniewska, 2013): 

  Δ௪ ,ߟ = ൝ Δ ,ߟ for stimulants,Δ ,ߟ      for destimulants, 
 

where: Δߟ,௪  is the value of the ݅-th normalized variable for the pattern, Δߟ,  is the 

value of the ݅-th normalized variable for the first quartile, Δߟ,  is the value of the ݅-th normalized variable for the third quartile. 
 
While, in the case of the anti-pattern (Δߟ,௪ ), the procedure is reversed – as its 

coordinates, the values of the first quartile for the stimulant and the third quartile 
for the destimulant are assumed. If the pattern is determined and based on quar-
tiles it represents an unreal, idealized object. There is therefore no need to deter-
mine the deviation increases for its coordinates. Determination of synthetic vector 
measure based on the scalar ratio of vectors representing the objects and vectors 
pattern and anti-pattern is determined on the basis of the formula (Nermend, Tar-
czyńska-Łuniewska 2013): 

 
 Δm௦ఎ =  ∑ ቆΔߟ, − Δߟ,௪ ቇெୀଵ ൬Δߟ,௪ − Δߟ,௪ ൰

∑ ቆΔߟ,௪ − Δߟ,௪ ቇெୀଵ ଶ . (13)

                      
18 They can also be determined based on the real object. 
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The next step is to assign the tested objects (in this case: the geographic re-
gions of Europe) to the appropriate classes with following way (Nermend, Tar-
czyńska-Łuniewska, 2013): 

 

cl =
ەۖۖۖ
۔ۖۖ
1ۓۖ for Δ݉ௌఎ ≥ ∆݉ௌതതതതതത + ,ೄ∆ߪ       

2 for Δ݉ௌఎ ≥ ∆݉ௌതതതതതത           ∧ Δ݉ௌఎ < ∆݉ௌതതതതതത + ,ೄ∆ߪ
34 forfor Δ݉ௌఎ ≥ ∆݉ௌതതതതതത − ೄ∆ߪ ∧ Δ݉ௌఎ < ∆݉ௌതതതതതത,Δ݉ௌఎ < ∆݉ௌതതതതതത − ,ೄ∆ߪ       

 

 
where: ∆݉ௌതതതതതത is the mean value of the mean value increment, ߪ∆ೄ – is the stand-
ard deviation of the mean value increment and cl  – is class number for the ݆-th 

object. 

 
The first class includes the best objects with the highest values of the syn-

thetic vector measures and the fourth class the worst ones with the lowest 
values. 

On the basis of the increments of standard deviations the maximum value of the 
standard deviation increment is determined, as follows (Nermend, Tarczyńska- 
Łuniewska 2013): 

 
 ∆݉௦ఙ௫݆ = max (Δߪ,)ඨ∑ ቆΔߟ,௪ − Δߟ,௪ ቇெୀଵ ଶ . 

(14)

 
This maximum value of the increments of standard deviation can be interpret-

ed as a measure of the spatial homogeneity (hl ఙ) of development. The lower is 

the value of this measure the greater is homogeneity and the smaller are the 
differences between the objects and reverse. Next, the ratio of this maximum 
value of the increments of standard deviation to the width of the class can be 
estimated. The division into classes according the level of homogeneity of sus-
tainable development and the width of these classes can be carried out in the 
following way: 
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   cl ఙ =  
۔ۖۖەۖۖ
1ۓ for Δ݉ௌఙ < ,ௌߪଵ       2 for Δ݉ௌఙ ≥ ௌߪଵ ∧ Δ݉ௌఙ < ௌ,3ߪଶ for4 for Δ݉ௌఙ ≥Δ݉ௌఙ ≥ ௌߪଶ ∧ Δ݉ௌఙ < ,ௌߪଷ,ௌߪଷ        

 

 
where: cl ఙ is class number for maximum value of standard deviation of ݆-th object, 3 ,2 ,1 – scaling factors chosen by the researcher. 

 
3. STUDY RESULTS 

 
Table 2 shows the results of the classification and the typological groups of 

the EU countries obtained by means of the taxonomic measure of development 
(formulas 3–5) calculated on the basis of the characteristics of their situation in 
the area of sustainable development. The positions of individual countries in the 
obtained rankings were usually different, with the exception of Sweden and 
Denmark whose positions (the first and the second, respectively) did not change 
in the years of study. Finland and Italy did not move further than by one or two 
positions. The greatest leaps were observed in the case of Slovakia which was 
one second last in the 2004 ranking, then in 2008 jumped 7 positions higher to 
get to the 7th position in 2014.  

Sixteen EU countries did not see any fall in the ranking due to the crisis, while 
four countries went up in the ranking by at least six positions. The situation in the 
area of sustainable development in 2008 compared to 2004 deteriorated in 
12 countries – the most affected were Hungary (the fall from the 8th to the 22nd 
position) and France (the fall from the 9th to the 17th position). Cyprus, Ireland, 
Luxembourg and Spain went down in 2008 by five positions in relation to 2004. 
Over the decade of 2004–2014 four member states (Cyprus, Greece, Ireland 
and Portugal) were ranked lower in each of the years 2008 and 2014 in relation 
to previously studied year. It should be noted that in 2014 only ten EU countries 
improved their situation in comparison to 2004. A half of them fell in the ranking 
for 2014 in relation to 2008 with Greece and the Czech Republic going down by 
11 and 10 positions, respectively.  

Because the position in the ranking of individual EU countries in the years of 
study is not the same (in some cases the movements in the ranking are consid-
erable), Kendall’s tau coefficients were determined in order to assess the con-
formity of ordering the objects under study (table 3)19. High values of the coeffi-
                      

19 Kendall’s tau coefficients adopt values from the interval [–1, 1]. The closer their value is to 1, the 
greater is the conformity of ordering (Stanisz, 2007, p. 313–314). 
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cients confirm the conformity of linear ordering of countries, despite the differ-
ences in positions taken by some objects. The highest correlation coefficient 
was obtained for the 2004 and 2008 rankings. Sometimes, even one diagnostic 
feature was decisive for belonging to a particular group, the level of which clearly 
distinguished countries themselves. Due to this, it was decided to determine the 
measures j  that can be interpreted as the scales defining the relative im-

portance of individual diagnostic features20. These measures were calculated 
according to the formula (Nowak, 1990, p. 34–35): 
 
 ߱ = ܸ∑ ܸୀଵ ∙ 100%, (15)

 
where: Vj – classic coefficient of variation calculated for the j-th diagnostic fea-
ture. 

 
Table 2. THE EU COUNTRIES SORTED BY THE SUSTAINABLE  

DEVELOPMENT IN: 2004, 2008 AND 2014 

Country 
Value of 

synthetic meas-
ure (i) 

Position in the 
ranking Group 

2004 
Sweden  ................  0.689 1 

I 

Denmark  ..............  0.604 2 
Ireland  ..................  0.551 3 
Finland  .................  0.526 4 
Luxembourg  .........  0.428 5 
Slovenia  ...............  0.397 6 
Austria  ..................  0.350 7 
Hungary  ...............  0.348 8 

II 

France  ..................  0.341 9 
Czech Republic  ....  0.322 10 
Latvia  ...................  0.300 11 
Lithuania  ..............  0.294 12 
Estonia  .................  0.294 13 
Cyprus ...................  0.289 14 
Portugal  ................  0.285 15 

III 

Belgium  ................  0.250 16 
Greece  .................  0.221 17 
United Kingdom  ...  0.216 18 
Netherlands  ..........  0.215 19 
Germany  ..............  0.202 20 
Malta  ....................  0.181 21 
Romania  ...............  0.177 22 

IV 

Spain  ....................  0.125 23 
Croatia  .................  0.108 24 
Italy  ......................  0.077 25 
Bulgaria  ................  0.046 26 
Slovakia  ...............  0.013 27 
Poland  ..................  –0.076 28 

                      
20 The higher the value of the measure, the greater the importance of the j-th diagnostic feature. 
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Table 2. THE EU COUNTRIES SORTED BY THE SUSTAINABLE 
DEVELOPMENT IN: 2004, 2008 AND 2014 (cont.) 

Country 
Value of 

synthetic meas-
ure (i) 

Position in the 
ranking Group 

2008 
Sweden  .................  0.716 1 

I 

Denmark  ................  0.658 2 
Finland  ..................  0.526 3 
Austria  ...................  0.482 4 
Latvia .....................  0.467 5 
Slovenia  ................  0.434 6 
Czech Republic  .....  0.380 7 
Ireland  ...................  0.375 8 

II 

Lithuania  ................  0.354 9 
Luxembourg  ..........  0.342 10 
Estonia  ..................  0.320 11 
Romania  ................  0.316 12 
Belgium  .................  0.283 13 
Germany   ..............  0.277 14 
Netherlands  ...........  0.270 15 

III 

Portugal  .................  0.262 16 
France  ...................  0.253 17 
Greece  ..................  0.251 18 
Cyprus  ...................  0.247 19 
Slovakia  .................  0.240 20 
United Kingdom  .....  0.222 21 
Hungary  .................  0.210 22 

IV 

Bulgaria  .................  0.160 23 
Poland  ...................  0.157 24 
Malta  .....................  0.141 25 
Croatia ...................  0.131 26 
Italy  .......................  0.073 27 
Spain  .....................  0.003 28 

2014 
Sweden  .................  0.820 1 

I 

Denmark  ................  0.688 2 
Lithuania  ................  0.633 3 
Luxembourg  ..........  0.623 4 
Finland  ..................  0.608 5 
Latvia .....................  0.557 6 
Slovakia  .................  0.512 7 
Austria  ...................  0.478 8 

II 

Slovenia  ................  0.469 9 
France  ...................  0.465 10 
United Kingdom  .....  0.445 11 
Ireland  ...................  0.410 12 
Poland  ...................  0.397 13 
Estonia  ..................  0.371 14 
Germany   ..............  0.339 15 

III 

Belgium  .................  0.334 16 
Hungary  .................  0.325 17 
Netherlands  ...........  0.312 18 
Portugal  .................  0.309 19 
Czech Republic  .....  0.306 20 
Cyprus  ...................  0.281 21 
Romania  ................  0.266 22 

IV 

Croatia ...................  0.219 23 
Bulgaria  .................  0.183 24 
Malta  .....................  0.105 25 
Italy  .......................  0.074 26 
Spain  .....................  0.067 27 
Greece  ..................  0.026 28 

S o u r c e: own calculations. 
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Table 3. KENDALL’S Τ COEFFICIENTS CALCULATED FOR THE RANKS OF COUNTRIES 
ACCORDING TO TAXONOMIC MEASURES OF DEVELOPMENT 

Year 2004 2008 2014 

2004  ............................  1.0000 0.6138 0.4815 
2008  ............................  0.6138 1.0000 0.5714 
2014  ............................  0.4815 0.5714 1.0000 

S o u r c e: own calculations. 

 
It turned out that in the study of the sustainable development of EU countries 

based on data from the last analyzed period (2014) the most important are: pri-
mary energy consumption (x14fDH – 11.52%), energy consumption of road 
transport relative to GDP (x19gDE  – 11.40%), final energy consumption (x5bDE – 
11.30%), long-term unemployment rate (x8cDE  – 6.35%), share of renewable 
energy in gross final energy consumption (x15fSO – 6.20%). These five diagnostic 
features were characterized by the highest variability in the set of attributes ac-
cepted for testing, their share exceeded 46% of the total value of the sum of 
variability coefficients and therefore they significantly influenced the classifica-
tion of objects (EU Member States). In order to show the differences in the level 
of listed characteristics in individual groups, average values in groups were cal-
culated and presented in figures 1–2. 

 
Figure 1. Average energy consumption of road transport, 1000 tons of oil equivalent 

in typological groups 
 

 
Source: own elaboration. 
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Figure 2. Average longiterm unemployment rate in typological groups  

 
Source: own elaboration. 

 
In the first group there were seven countries for which the mean values of di-

agnostic features were definitely higher than the EU mean in the case of stimu-
lants and lower in the case of destimulants. The objects from this group were 
mainly characterized by low final energy consumption, high share of energy from 
renewable sources in total energy, low long-term unemployment rate, high level 
of education (low participation of early school leavers and high share of people 
continuing education) and higher compared to the average EU citizens’ confi-
dence. The priority for the classification of countries in the second group was 
mainly high expenditure on R&D, good level of education (low share of early 
school leavers and high share of people with the third level of education) and 
high level of primary energy consumption. Objects that were classified in the 
third group were characterized by similar average values of the analyzed diag-
nostic features in comparison with the second group. However, the lower rating 
of the third group was the result of the higher level of the total unemployment 
rate, long-term unemployment rate and the lowest among all groups, the aver-
age value for the share of energy from renewable sources in total energy. In the 
worst situation in terms of sustainable development were EU countries classified 
into the fourth group characterized by unfavorable values of the majority of diag-
nostic features accepted for study21. 
                      

21 A similar analysis of typological groups can be made in the years 2008–2013. While examining 
the importance of diagnostic features according to the formula 15, it was also noticed that in the 
study of the sustainable development of the EU countries the same features that differentiated ob-
jects in 2014 were of the greatest importance. 
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The next stage of the study was the analysis of spatial homogeneity of the EU 
countries located in geographical regions of Europe. In this case the results for EU 
countries located in 4 following geographical regions of Europe were analysed: 
a) Western Europe (Austria, Belgium, France, Germany, Luxembourg, the 

Netherlands),  
b) Northern Europe (Denmark, Estonia, Finland, Ireland, Latvia, Lithuania, Swe-

den, the United Kingdom),  
c) Southern Europe (Cyprus, Croatia, Greece, Italy, Malta, Portugal, Slovenia, 

Spain), 
d) Eastern Europe (Bulgaria, the Czech Republic, Hungary, Poland, Romania, 

Slovakia).  
The analysis results are presented in table 4 which shows both the ordering of 

the regions according to the level of development of the average country located 
in these regions (according the formula 13) and the results of the spatial homoge-
neity of sustainable development of geographical regions of Europe (formula 14).  

 
Table 4. THE DIVISION OF GEOGRAPHICAL REGIONS OF EUROPE INTO CLASSES 

ACCORDING TO THE VALUES OF SYNTHETIC VECTOR MEASURE 
AND THEIR SPATIAL HOMOGENEITY 

Year  The division of Europe due to: 
Europe 

Northern Western Southern Eastern 

2004 

the values of synthetic vector 
measure  
(Δm௦ఎ )a 

1st rank/ 
Class I 

2nd rank/ 
Class II 

3rd rank/ 
Class III 

4th rank/ 
Class IV 

spatial homogeneity (hl ఙ)b 
28.36% 29.04% 30.75% 21.04% 

2008 

the values of synthetic vector 
measure  
(Δm௦ఎ )a 

1st rank/ 
Class I 

2nd rank/ 
Class II 

3rd rank/ 
Class III 

4th rank/ 
Class IV 

spatial homogeneity (hl ఙ)b 
34.25% 29.80% 37.63% 22.33% 

2014 

the values of synthetic vector 
measure  
(Δm௦ఎ )a 

1st rank/ 
Class I 

2nd rank/ 
Class II 

4th rank/ 
Class IV 

3rd rank/ 
Class III 

spatial homogeneity (hl ఙ)b 
24.59% 19.41% 21.24% 26.62% 

a The level of development of an average country in geographic European region. b The ratio of the maximum 
increase of the standard deviation to the width of the class. 

Source: own calculations. 

 
The impact of the economic crisis on the ordering of the EU countries in four 

geographical regions of Europe is particularly obvious in the Southern and East-
ern European Union countries. The position of the Southern countries, that had 
to cope with the world economic and financial crisis deteriorated and they fell in 
2014 into the fourth typological group at the lowest level of development. Before 
the crisis those countries belonged to the third group. In contrast, the position of 
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the East European countries improved – they appeared the most immune to the 
crisis and in 2014 were promoted to the third typological group from the group IV 
where they were classified in 2004 and 2008. According to the study results, 
geographical regions of the EU represent an average level of homogeneity of 
the sustainable development distribution. The results of spatial homogeneity of 
sustainable development in 2008 and 2014 are shown on figures 3–4. 

The influence of the world crisis on the development slowdown can be clear-
ly seen. In 2008 in the case of three out of four analysed geographical regions 
(Northern, Southern and Western Europe) more disturbances in their spatial 
homogeneity (hl ఙ > 29%) were observed than in the case of the Eastern Eu-
rope (hl ఙ = 22.33%). This situation was probably due to the aforementioned 

resistance to the crisis of such economies as Poland, the Czech Republic, 
Slovakia or Hungary. However, in 2014 the countries of this part of the EU saw 
more imbalance in the sustainable development levels than other regions (the 
highest value of cl ఙ  in the case of this regions of Europe). However, it should 

be noted that in that year in none of the regions the imbalance exceeded 27%. 

 
Figure 3. The division into classes due to the value of the synthetic measure of the sustainable 

development in 2004. 

class 1
class 2
class 3
class 4

 
Source: own elaboration. 
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Figure 4. The division into classes due to the value of the synthetic measure of the sustainable 
development in 2014. 

class 1
class 2
class 3
class 4  

Source: own elaboration. 

 
4. CONCLUSIONS 

 
In the paper the results of the analysis of the spatial uniformity on the basis 

of sustainable development indicators published by Eurostat were presented. 
To the study of the spatial uniformity the taxonomic measure of development 
based on median Weber vector as well vector calculus were used. On the ba-
sis of the results of the analysis the spatial differences between the EU coun-
tries and the European geographical regions was confirmed. It should be not-
ed, that according of the results of these analysis the improvement of the posi-
tion taken by Eastern EU countries in the ranking and the deterioration of this 
position taken by the Southern EU countries were observed. 

The same results was noted by others authors (e.g. Klenert et al., 2015; Ko-
bayashi, Shirai, 2016). These authors indicate that the division of the European 
Union into ’better’ West European countries and ’worse’ Eastern Europe, or ’old’ 
developed and ’new’ developing Union or the founding countries and the remain-
ing member states, are still synonymous to the differences in the EU develop-
ment. The map of divided Europe has changed a little after the economic and 
financial crisis when it turned out that it was the Eurozone countries in the South 
that suffered most of all. According to the report Central Europe Fit for the Fu-
ture (Nic, Świeboda, 2014) published by the think-tanks of the Central European 
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Policy Institute in Bratislava and the Warsaw demosEuropa: ”North-South axis 
has largely replaced the old one between ’West’ and ’East’.” The authors of the 
report also point out that the term ’new Europe’ no longer denotes ’the newly 
introduced to the club of rich old democracies’ but refers to the countries which, 
despite their difficult history, have proven their capacity to transform politically 
and socially and managed to cope with the crisis better than the countries in the 
South, and even in the North of the Europe. A good example are the Baltic coun-
tries that suffered from the 2009 recession at the level of almost 20% of their 
GDP, but several years later, having implemented painful reforms, met the Eu-
rozone membership criteria and today are developing at the faster rate than any 
member of  the EU. According to Eurostat data base, in 2015 Polish GDP per 
capita reached 38.7% of the EU average. In the same year in the Czech Repub-
lic, which entered the Union with better economy than Poland, GDP per capita 
was at 54.1% of the European average, in Slovakia – 50.1%, and in Slovenia – 
65.0% – i.e. more than in Portugal (60.3%) or Greece (56.4%). What is more, 
most of these countries have much worse transport infrastructure and their ex-
penditure on R&D is much lower than in the rest of Europe, except Slovenia 
which spends 2.39% of its GDP (in comparison to Germany with 2.87%).  

Catching up with the rest of Europe in this and other areas will take another 
decade. The negative effect of the crisis on the sustainable development of the 
EU countries is particularly present in the South European countries the majority 
of which found it difficult to survive the economic slowdown. However, the situa-
tion has improved in Eastern Europe. Moreover, the Western and Northern Eu-
ropean Union countries have strengthened their position in the rankings measur-
ing the rate of their sustainable development.  

The results obtained in this study can be used in subsequent years to exam-
ine the direction of changes in sustainable development levels observed both 
from the point of view of the EU Member States and geographical regions. The 
analyses of the Union’s internal homogeneity in this aspect will be particularly 
useful. The methods applied in this study, such as Weber point and vector anal-
ysis, as well as the adopted procedure of selecting diagnostic features allowed 
for tracking the changes in sustainable development levels not only through the 
prism of individual SD indicators, but also in reference to many features explain-
ing the EU sustainable development.  
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BADANIE PRZESTRZENNEJ JEDNORODNOŚCI ZRÓWNOWAŻONEGO 
ROZWOJU UNII EUROPEJSKIEJ PRZED, W TRAKCIE I PO KRYZYSIE 

EKONOMICZNYM 

Streszczenie 

Celem pracy jest analiza przestrzennej jednorodności w obszarze zrównowa-
żonego rozwoju Unii Europejskiej oraz regionów geograficznych Europy rozpa-
trywanych z punktu widzenia krajów członkowskich UE położonych w tych re-
gionach przed, w trakcie i po kryzysie ekonomicznym z lat 2007–2008. W anali-
zach podobieństw i różnic rozwojowych występujących pomiędzy krajami człon-
kowskimi Unii Europejskiej i w przypadku regionów geograficznych Europy wy-
korzystano wskaźniki zrównoważonego rozwoju publikowane przez Eurostat. Do 
ostatecznego zbioru cech diagnostycznych, które stały się podstawą dalszych 
badań empirycznych, wybrano 22 wskaźniki. Do badania przestrzennego zróż-
nicowania w obszarze zrównoważonego rozwoju wykorzystano taksonomiczny 
miernik rozwoju wyznaczony w oparciu o medianę Webera oraz rachunek wek-
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torowy. Wpływ kryzysu na uszeregowanie krajów członkowskich UE jest szcze-
gólnie widoczny w przypadku krajów Europy Południowej i Wschodniej. Pozycja 
krajów Europy Południowej, które najgorzej poradziły sobie ze światowym kryzy-
sem gospodarczym i finansowym pogorszyła się, a kraje te zostały zaklasyfiko-
wane do grupy o najniższym poziomie rozwoju przeciętnego kraju członkow-
skiego. Otrzymane wyniki mogą być wykorzystane w kolejnych latach do bada-
nia kierunków zmian zachodzących w obszarze zrównoważonego rozwoju anali-
zowanych zarówno z punktu widzenia pojedynczych państw członkowskich UE, 
jak i regionów geograficznych Europy. 

Słowa kluczowe: zrównoważony rozwój, Unia Europejska, wielowymiarowa 
analiza porównawcza, mediana Webera, rachunek wektorowy  

 
STUDY OF SPATIAL UNIFORMITY OF SUSTAINABLE DEVELOPMENT 

OF THE EUROPEAN UNION BEFORE, DURING  
AND AFTER THE ECONOMIC CRISIS 

Abstract 

The purpose of the paper is study of spatial uniformity in the field of sustaina-
ble development of European Union and geographical regions of Europe ana-
lyzed by the prism of EU countries located in this regions before, during and 
after the economic crisis from 2007–2008. 

Material and methods The analysis of similarities and differences between the 
EU Member States countries or in the case of geographic regions of Europe has 
been based on sustainable development indicators published by Eurostat. 
To the final set of diagnostic features, the 22 indicators have been selected. 
To study the spatial differentiation of sustainable development the taxonomic 
measure of development based on median vector Weber as well vector calculus 
were used. The impact of the economic crisis is particularly obvious in the 
Southern and Eastern European Union countries. The position of the Southern 
countries, that failed to cope with the world economic and financial crisis, deteri-
orated and they fell into the group at the lowest level of development. The re-
sults obtained in this study can be used in subsequent years to examine the 
direction of changes in sustainable development levels observed both from the 
point of view of the EU Member States and geographical regions. 

Keywords: sustainable development, multidimensional comparative analysis, 
the European Union, vector calculus, Weber median 
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